4.2-2 Argue the solution to

$$
T(n)=T(n / 3)+T(2 n / 3)+n
$$

is $\Omega(n \lg n)$ by appealing to the recursion tree.

Draw the recursion tree.

How many levels does the tree have? This is equal to the longest path from the root to a leaf.

The shortest path to a leaf occurs when we take the heavy branch each time. The height k is given by $n(1 / 3)^{k} \leq 1$, meaning $n \leq 3^{k}$ or $k \geq \lg _{3} n$.

The longest path to a leaf occurs when we take the light branch each time. The height k is given by $n(2 / 3)^{k} \leq 1$, meaning $n \leq(3 / 2)^{k}$ or $k \geq \lg _{3 / 2} n$.

The problem asks to show that $T(n)=\Omega(n \lg n)$, meaning we are looking for a lower bound

On any full level, the additive terms sums to n. There are $\log _{3} n$ full levels. Thus $T(n) \geq n \log _{3} n=\Omega(n \lg n)$
4.2-4 Use iteration to solve where $a \geq 1$ is a constant.

Note iteration is backsubstitution.

$$
\begin{aligned}
T(n) & =T(n-a)+T(a)+n \\
& =(T(\mathrm{n}-2 \mathrm{a})+\mathrm{T}(\mathrm{a})+\mathrm{n}-\mathrm{a})+\mathrm{T}(\mathrm{a})+\mathrm{n} \\
& =(\mathrm{T}(\mathrm{n}-3 \mathrm{a})+\mathrm{T}(\mathrm{a})+\mathrm{n}-2 \mathrm{a})+2 \mathrm{~T}(\mathrm{a})+2 \mathrm{n}-3 \mathrm{a} \\
: & \\
& \approx \sum_{i=0}^{n / a} T(a)+\sum_{i=0}^{n / a} n-i a \\
& \approx(n / a) T(a)+\sum_{i=0}^{n / a} n-a \sum_{i=0}^{n / a} i \\
& \approx(n / a) T(a)+n \sum_{i=0}^{n / a} 1-a \sum_{i=0}^{n / a} i \\
& \approx(n / a) T(a)+n(n / a)-a(n / a)^{2} / 2
\end{aligned}
$$

