Selection Sort

A simple $O\left(n^{2}\right)$ sorting algorithm is selection sort.
Sweep through all the elements to find the smallest item, then the smallest remaining item, etc. until the array is sorted.

Selection-sort(A)
for $i=1$ to n

$$
\begin{aligned}
& \text { for } j=i+1 \text { to } n \\
& \quad \text { if }(A[j]<A[i]) \text { then } \operatorname{swap}(\mathrm{A}[\mathrm{i}], \mathrm{A}[\mathrm{j}])
\end{aligned}
$$

It is clear this algorithm must be correct from an inductive argument, since the i th element is in its correct position.

It is clear that this algorithm takes $O\left(n^{2}\right)$ time.
It is clear that the analysis of this algorithm cannot be improved because there will be $n / 2$ iterations which will require at least $n / 2$ comparisons each, so at least $n^{2} / 4$ comparisons will be made. More careful analysis doubles this.

Thus selection sort runs in $\Theta\left(n^{2}\right)$ time.

