Binary Heaps

A binary heap is defined to be a binary tree with a key
in each node such that:

1. All leaves are on, at most, two adjacent levels.

2. All leaves on the lowest level occur to the left,
and all levels except the lowest one are completely
filled.

3. The key in root is > all its children, and the left
and right subtrees are again binary heaps.

Conditions 1 and 2 specify shape of the tree, and con-
dition 3 the labeling of the tree.

The ancestor relation in a heap defines a partial or-
der on its elements, which means it is reflexive, anti-
symmetric, and transitive.

1. Reflexive: z is an ancestor of itself.

2. Anti-symmetric: if © is an ancestor of y and vy is
an ancestor of z, then x = y.

3. Transitive: if = is an ancestor of y and vy is an
ancestor of z, £ is an ancestor of z.

Partial orders can be used to model heirarchies with
incomplete information or equal-valued elements. One
of my favorite games with my parents is fleshing out
the partial order of “big” old-time movie stars.

The partial order defined by the heap structure is weaker
than that of the total order, which explains

1. Why it is easier to build.

2. Why it is less useful than sorting (but still very
important).

Constructing Heaps

Heaps can be constructed incrementally, by inserting
new elements into the left-most open spot in the array.

If the new element is greater than its parent, swap their
positions and recur.

Since at each step, we replace the root of a subtree by
a larger one, we preserve the heap order.

Since all but the last level is always filled, the height A
of an n element heap is bounded because:

h
22i=2h+1—1>n
1—=1

so h = |lgn]|.

Doing n such insertions takes ©®(nlogn), since the last
n/2 insertions require O(log N) time each.

Heapify

The bottom up insertion algorithm gives a good way
to build a heap, but Robert Floyd found a better way,
using a merge procedure called heapify.

Given two heaps and a fresh element, they can be
merged into one by making the new one the root and
trickling down.

Build-heap(A)
n = |A|
For i = |[n/2]| to 1 do
Heapify(A,i)

Heapify(A,i)

left = 22

right = 2: 4+ 1

if (left <mn) and (Alleft] > Al:]) then
max = left
else max = i

if (right <n) and (A(right] > A[maz]) then
max = right

if (maz # ¢) then
swap(AlJi],A[max])
Heapify(A,max)

Rough Analysis of Heapify

Heapify on a subtree containing n nodes takes

T(n) < T(2n/3) + O(1)
The 2/3 comes from merging heaps whose levels dif-
fer by one. The last row could be exactly half filled.

Besides, the asymptotic answer won’t change so long
the fraction is less than one.

Solve the recurrence using the Master T heorem.
Let a=1, b=3/2 and f(n) = 1.
Note that ©(n) = ©(1), since logz 1 = 0.

Thus Case 2 of the Master theorem applies.

The Master Theorem: Let a > 1 and b > 1 be constants, let f(n)
be a function, and let T'(n) be defined on the nonnegative integers
by the recurrence

T(n) = aT(n/b) + f(n)

where we interpret n/b to mean either |n/b| or [n/b]. Then T(n)
can be bounded asymptotically as follows:

1. If f(n) = O(n'°962~€) for some constant ¢ > 0, then T(n) =
@(nlogb a)_

2. 1If #(n) = ©(n'°9?), then T(n) = ©(n'°% g n).
3. If f(n) = Q(n'°92T€) for some constant ¢ > 0, and if

af(n/b) < cf(n) for some constant ¢ < 1, and all sufficiently
large n, then T'(n) = @(f(n)).

Exact Analysis of Heapify

In fact, Heapify performs better than O(nlogn), be-
cause most of the heaps we merge are extremely small.

In a full binary tree on n nodes, there are n/2 nodes
which are leaves (i.e. height 0), n/4 nodes which are
height 1, n/8 nodes which are height 2, ...

In general, there are at most [n/2"11] nodes of height
h, so the cost of building a heap is:

llgn| llgn|
/2" o) =0o(n) h/2")
h=0 h=0

Since this sum is not quite a geometric series, we can’t
apply the usual identity to get the sum. But it should
be clear that the series converges.

Proof of Convergence

Series convergence is the “free lunch” of algorithm
analysis.

The identify for the sum of a geometric series is

o’e) . 1
"’ =

If we take the derivative of both sides,

k-1 — 1
Ek C(1-2)?

Multiplying both sides of the equation by = gives the
identity we need:

& @)
Shek= T
k=0 (1-2)

Substituting x = 1/2 gives a sum of 2, so Build-heap
uses at most 2n comparisons and thus linear time.

The Lessons of Heapsort, 1

" Are we doing a careful analysis? Might our algorithm
be faster than it seems?”

Typically in our analysis, we will say that since we are

doing at most x operations of at most y time each, the
total time is O(zy).

However, if we overestimate too much, our bound may
not be as tight as it should be!

Heapsort

Heapify can be used to construct a heap, using the
observation that an isolated element forms a heap of
size 1.

Heapsort(A)
Build-heap(A)
for:=n to 1 do

swap(A[1],Ali])
n=n-—1

Heapify(A,1)

If we construct our heap from bottom to top using
Heapify, we do not have to do anything with the last
n/2 elements.

With the implicit tree defined by array positions, (i.e.
the ith position is the parent of the 2:th and (2:+ 1)st
positions) the leaves start out as heaps.

Exchanging the maximum element with the last ele-
ment and calling heapify repeatedly gives an O(nlgn)
sorting algorithm, named Heapsort.

Heapsort Animations

The Lessons of Heapsort, II

Always ask yourself, “Can we use a different data struc-
ture?”

Selection sort scans throught the entire array, repeat-
edly finding the smallest remaining element.

For:=1ton
A: Find the smallest of the first n — 7+ 1 items.
B: Pull it out of the array and put it first.

Using arrays or unsorted linked lists as the data struc-
ture, operation A takes O(n) time and operation B
takes O(1).

Using heaps, both of these operations can be done
within O(lgn) time, balancing the work and achieving
a better tradeoff.

Priority Queues

A priority queue is a data structure on sets of keys
supporting the following operations:

e Insert(S, x) - insert z into set S
e Maximum(S) - return the largest key in S

e ExtractMax(S) - return and remove the largest key
in S

These operations can be easily supported using a heap.
e Insert - use the trickle up insertion in O(logn).

e Maximum - read the first element in the array in
O(1).

e Extract-Max - delete first element, replace it with

the last, decrement the element counter, then heapify
in O(logn).

Applications of Priority Queues

Heaps as stacks or queues

e In a stack, push inserts a new item and pop re-
moves the most recently pushed item.

e In a queue, enqueue inserts a new item and de-
queue removes the least recently enqueued item.

Both stacks and queues can be simulated by using a
heap, when we add a new time field to each item and
order the heap according it this time field.

e To simulate the stack, increment the time with
each insertion and put the maximum on top of
the heap.

e To simulate the queue, decrement the time with
each insertion and put the maximum on top of the
heap (or increment times and keep the minimum
on top)

This simulation is not as efficient as a normal stack/queue
implementation, but it is a cute demonstration of the
flexibility of a priority queue.

Discrete Event Simulations

In simulations of airports, parking lots, and jai-alai —
priority queues can be used to maintain who goes next.

The stack and queue orders are just special cases of
orderings. In real life, certain people cut in line.

Sweepline Algorithms in
Computational Geometry

In the priority queue, we will store the points we have
not yet encountered, ordered by z coordinate. and
push the line forward one stop at a time.

