
Binary Heaps

A binary heap is de�ned to be a binary tree with a key
in each node such that�

	� All leaves are on
 at most
 two adjacent levels�

�� All leaves on the lowest level occur to the left

and all levels except the lowest one are completely
�lled�

�� The key in root is � all its children
 and the left
and right subtrees are again binary heaps�

Conditions 	 and � specify shape of the tree
 and con�
dition � the labeling of the tree�

1/1

7/4 2/2

12/7 10/30 12/25

The ancestor relation in a heap de�nes a partial or�
der on its elements
 which means it is re�exive
 anti�
symmetric
 and transitive�

	� Re�exive� x is an ancestor of itself�

�� Anti�symmetric� if x is an ancestor of y and y is
an ancestor of x
 then x � y�

�� Transitive� if x is an ancestor of y and y is an
ancestor of z
 x is an ancestor of z�

Partial orders can be used to model heirarchies with
incomplete information or equal�valued elements� One
of my favorite games with my parents is �eshing out
the partial order of �big� old�time movie stars�

The partial order de�ned by the heap structure is weaker
than that of the total order
 which explains

	� Why it is easier to build�

�� Why it is less useful than sorting �but still very
important��

Constructing Heaps

Heaps can be constructed incrementally
 by inserting
new elements into the left�most open spot in the array�

If the new element is greater than its parent
 swap their
positions and recur�

Since at each step
 we replace the root of a subtree by
a larger one
 we preserve the heap order�

Since all but the last level is always �lled
 the height h
of an n element heap is bounded because�

hX

i��

�i � �h�� � 	 � n

so h � blgnc�

Doing n such insertions takes ��n logn�
 since the last
n�� insertions require O�logN� time each�

Heapify

The bottom up insertion algorithm gives a good way
to build a heap
 but Robert Floyd found a better way

using a merge procedure called heapify�

Given two heaps and a fresh element
 they can be
merged into one by making the new one the root and
trickling down�

Build�heap�A�
n � jAj
For i� bn��c to 	 do

Heapify�A
i�

Heapify�A
i�
left � �i
right � �i�	
if �left � n� and �A�left� � A�i�� then

max � left
else max � i

if �right � n� and �A�right� � A�max�� then
max � right

if �max �� i� then
swap�A�i�
A�max��
Heapify�A
max�

Rough Analysis of Heapify
Heapify on a subtree containing n nodes takes

T �n� � T ��n��� � O�	�

The ��� comes from merging heaps whose levels dif�
fer by one� The last row could be exactly half �lled�
Besides
 the asymptotic answer won�t change so long
the fraction is less than one�

Solve the recurrence using the Master Theorem�

Let a � 	
 b� ��� and f�n� � 	�

Note that ��n
log��� �� � ��	�
 since log��� 	 � ��

Thus Case � of the Master theorem applies�

The Master Theorem� Let a � � and b � � be constants� let f�n�
be a function� and let T�n� be de	ned on the nonnegative integers
by the recurrence

T�n� � aT�n�b� � f�n�

where we interpret n�b to mean either bn�bc or dn�be
 Then T�n�
can be bounded asymptotically as follows�

�
 If f�n� � O�nlogb a��� for some constant � � �� then T�n� �

��nlogb a�

�
 If f�n� � ��nlogb a�� then T�n� � ��nlogb a lgn�

�
 If f�n� �
�nlogb a��� for some constant � � �� and if
af�n�b� � cf�n� for some constant c � �� and all su�ciently
large n� then T�n� � ��f�n��

Exact Analysis of Heapify

In fact
 Heapify performs better than O�n logn�
 be�
cause most of the heaps we merge are extremely small�

A

Z T

M

C D

Y

B X

 R J

 L P F H

In a full binary tree on n nodes
 there are n�� nodes
which are leaves �i�e� height ��
 n�� nodes which are
height 	
 n�� nodes which are height �
 � � �

In general
 there are at most dn��h��e nodes of height
h
 so the cost of building a heap is�

blgncX

h��

dn��h��eO�h� � O�n

blgncX

h��

h��h�

Since this sum is not quite a geometric series
 we can�t
apply the usual identity to get the sum� But it should
be clear that the series converges�

Proof of Convergence

Series convergence is the �free lunch� of algorithm
analysis�

The identify for the sum of a geometric series is

�X

k��

xk �
	

	� x

If we take the derivative of both sides
 � � �

�X

k��

kxk�� �
	

�	� x��

Multiplying both sides of the equation by x gives the
identity we need�

�X

k��

kxk �
x

�	� x��

Substituting x � 	�� gives a sum of �
 so Build�heap
uses at most �n comparisons and thus linear time�

The Lessons of Heapsort� I

�Are we doing a careful analysis� Might our algorithm
be faster than it seems��

Typically in our analysis
 we will say that since we are
doing at most x operations of at most y time each
 the
total time is O�xy��

However
 if we overestimate too much
 our bound may
not be as tight as it should be�

Heapsort

Heapify can be used to construct a heap
 using the
observation that an isolated element forms a heap of
size 	�

Heapsort�A�
Build�heap�A�
for i� n to 	 do

swap�A�	�
A�i��
n � n� 	
Heapify�A
	�

If we construct our heap from bottom to top using
Heapify
 we do not have to do anything with the last
n�� elements�

With the implicit tree de�ned by array positions
 �i�e�
the ith position is the parent of the �ith and ��i�	�st
positions� the leaves start out as heaps�

Exchanging the maximum element with the last ele�
ment and calling heapify repeatedly gives an O�n lgn�
sorting algorithm
 named Heapsort�

Heapsort Animations

The Lessons of Heapsort� II

Always ask yourself
 �Can we use a di�erent data struc�
ture��

Selection sort scans throught the entire array
 repeat�
edly �nding the smallest remaining element�

For i � 	 to n
A� Find the smallest of the �rst n� i� 	 items�
B� Pull it out of the array and put it �rst�

Using arrays or unsorted linked lists as the data struc�
ture
 operation A takes O�n� time and operation B
takes O�	��

Using heaps
 both of these operations can be done
within O�lgn� time
 balancing the work and achieving
a better tradeo��

Priority Queues

A priority queue is a data structure on sets of keys
supporting the following operations�

� Insert�S� x� � insert x into set S

� Maximum�S� � return the largest key in S

� ExtractMax�S� � return and remove the largest key
in S

These operations can be easily supported using a heap�

� Insert � use the trickle up insertion in O�logn��

� Maximum � read the �rst element in the array in
O�	��

� Extract�Max � delete �rst element
 replace it with
the last
 decrement the element counter
 then heapify
in O�logn��

Applications of Priority Queues

Heaps as stacks or queues

� In a stack
 push inserts a new item and pop re�
moves the most recently pushed item�

� In a queue
 enqueue inserts a new item and de�
queue removes the least recently enqueued item�

Both stacks and queues can be simulated by using a
heap
 when we add a new time �eld to each item and
order the heap according it this time �eld�

� To simulate the stack
 increment the time with
each insertion and put the maximum on top of
the heap�

� To simulate the queue
 decrement the time with
each insertion and put the maximum on top of the
heap �or increment times and keep the minimum
on top�

This simulation is not as e�cient as a normal stack�queue
implementation
 but it is a cute demonstration of the
�exibility of a priority queue�

Discrete Event Simulations

In simulations of airports
 parking lots
 and jai�alai
priority queues can be used to maintain who goes next�

The stack and queue orders are just special cases of
orderings� In real life
 certain people cut in line�

Sweepline Algorithms in
Computational Geometry

In the priority queue
 we will store the points we have
not yet encountered
 ordered by x coordinate� and
push the line forward one stop at a time�

