
Quicksort

Although mergesort is O�n lgn�� it is quite inconvenient
for implementation with arrays� since we need space to
merge�

In practice� the fastest sorting algorithm is Quicksort�
which uses partitioning as its main idea�

Example� Pivot about 
	�

�� �� � �� �� � � �� 		 before

� � � �� �� �� �� �� 		 after

Partitioning places all the elements less than the pivot
in the left part of the array� and all elements greater
than the pivot in the right part of the array� The pivot
�ts in the slot between them�

Note that the pivot element ends up in the correct
place in the total order�



Partitioning the elements

Once we have selected a pivot element� we can parti�
tion the array in one linear scan� by maintaining three
sections of the array� � pivot� � pivot� and unexplored�

Example� pivot about 
	


 �� �� � �� �� � � 
 ��


 � �� � �� �� � 
 ��

� 
 �� � �� �� � 
 ��

� 
 � � �� �� 
 �� ��

� � 
 � �� �� 
 �� ��

� � � 
 �� �� 
 �� ��

� � � 
 �� 
 �� �� ��

� � � 

�� �� �� ��

� � � �� �� �� �� ��

As we scan from left to right� we move the left bound
to the right when the element is less than the pivot�
otherwise we swap it with the rightmost unexplored
element and move the right bound one step closer to
the left�



Since the partitioning step consists of at most n swaps�
takes time linear in the number of keys� But what does
it buy us�


� The pivot element ends up in the position it retains
in the �nal sorted order�

�� After a partitioning� no element �ops to the other
side of the pivot in the �nal sorted order�

Thus we can sort the elements to the left of the pivot
and the right of the pivot independently	

This gives us a recursive sorting algorithm� since we can
use the partitioning approach to sort each subproblem�



Quicksort Animations



Pseudocode

Sort�A�
Quicksort�A�
�n�

Quicksort�A� low� high�
if �low � high�

pivot�location � Partition�A�low�high�
Quicksort�A�low� pivot�location � 
�
Quicksort�A� pivot�location

� high�

Partition�A�low�high�
pivot � A�low�
leftwall � low
for i� low

 to high

if �A�i� � pivot� then
leftwall � leftwall


swap�A�i��A�leftwall��

swap�A�low��A�leftwall��



Best Case for Quicksort

Since each element ultimately ends up in the correct
position� the algorithm correctly sorts� But how long
does it take�

The best case for divide�and�conquer algorithms comes
when we split the input as evenly as possible� Thus in
the best case� each subproblem is of size n���

The partition step on each subproblem is linear in its
size� Thus the total e�ort in partitioning the �k prob�
lems of size n��k is O�n��

The recursion tree for the best case looks like this�

The total partitioning on each level is O�n�� and it take
lgn levels of perfect partitions to get to single element
subproblems� When we are down to single elements�
the problems are sorted� Thus the total time in the
best case is O�n lgn��



Worst Case for Quicksort

Suppose instead our pivot element splits the array as
unequally as possible� Thus instead of n�� elements in
the smaller half� we get zero� meaning that the pivot
element is the biggest or smallest element in the array�

Now we have n � 
 levels� instead of lgn� for a worst
case time of ��n��� since the �rst n�� levels will each
have more than n�� elements to partition�

Thus the worst case time for Quicksort is worse than
Heapsort or Mergesort�

To justify its name� Quicksort had better be good in
the average case� Showing this requires some fairly
intricate analysis�

The divide and conquer principle applies to real life� If
you will break a job into pieces� it is best to make the
pieces of equal size�



Intuition� The Average Case
for Quicksort

Suppose we pick the pivot element at random in an
array of n keys�

1 n/4 3n/4 nn/2

Half the time� the pivot element will be from the center
half of the sorted array�

Whenever the pivot element is from positions n�� to
�n��� the larger remaining subarray contains at most
�n�� elements�

If we assume that the pivot element is always in this
range� what is the maximum number of partitions we
need to get from n elements down to 
 element�

�����l � n � 
 �� n� �����l

lgn � l � lg�����

Therefore l � lg������lg�n� � � lgn good partitions su�ce�



What have we shown�

At most � lgn levels of decent partitions su�ces to sort
an array of n elements�

But how often when we pick an arbitrary element as
pivot will it generate a decent partition�

Since any number between n�� and �n�� would make
a decent pivot� we get one half the time on average�

If we need � lgn levels of decent partitions to �nish the
job� and half of random partitions are decent� then on
average the recursion tree to quicksort the array has
� � lgn levels�

Since O�n� work is done partitioning on each level� the
average time is O�n lgn��

More careful analysis shows that the expected number
of comparisons is � 
���n lgn�



Average�Case Analysis of
Quicksort

To do a precise average�case analysis of quicksort� we
formulate a recurrence given the exact expected time
T �n��

T �n� �

nX

p��



n�T �p� 
� 
 T �n� p�� 
 n� 


Each possible pivot p is selected with equal probability�
The number of comparisons needed to do the partition
is n� 
�

We will need one useful fact about the Harmonic num�
bers Hn� namely

Hn �

nX

i��


�i � lnn

It is important to understand �
� where the recurrence
relation comes from and ��� how the log comes out
from the summation� The rest is just messy algebra�

T �n� �

nX

p��



n�T �p� 
� 
 T �n� p�� 
 n� 




T �n� �
�
n

nX

p��

T �p� 
� 
 n� 


nT �n� � �

nX

p��

T �p� 
� 
 n�n� 
� multiply by n

�n�
�T �n�
� � �

n��X

p��

T �p�
�
�n�
��n��� apply to n�


nT �n� � �n� 
�T �n� 
� � �T �n� 
� 
 ��n � 
�

rearranging the terms give us�

T �n�

n


�

T �n� 
�

n 

��n� 
�

n�n

�

substituting an � A�n���n

� gives

an � an��

��n� 
�

n�n

�
�

nX

i��

��i� 
�

i�i

�

an � �

nX

i��




�i

�
� � lnn

We are really interested in A�n�� so

A�n� � �n
 
�an � ��n

� lnn � 
���n lgn



What is the Worst Case�
The worst case for Quicksort depends upon how we
select our partition or pivot element� If we always select
either the �rst or last element of the subarray� the
worst�case occurs when the input is already sorted�

A B D F H J K

B D F H J K

D F H J K

F H J K

H J K

J K

K

Having the worst case occur when they are sorted or
almost sorted is very bad� since that is likely to be the
case in certain applications�

To eliminate this problem� pick a better pivot�


� Use the middle element of the subarray as pivot�

�� Use a random element of the array as the pivot�

�� Perhaps best of all� take the median of three el�
ements ��rst� last� middle� as the pivot� Why
should we use median instead of the mean�

Whichever of these three rules we use� the worst case
remains O�n��� However� because the worst case is
no longer a natural order it is much more di�cult to
occur�



Is Quicksort really faster than
Heapsort�

Since Heapsort is ��n lgn� and selection sort is ��n���
there is no debate about which will be better for decent�
sized �les�

But how can we compare two ��n lgn� algorithms to
see which is faster� Using the RAM model and the big
Oh notation� we can�t�

When Quicksort is implemented well� it is typically ���
times faster than mergesort or heapsort� The primary
reason is that the operations in the innermost loop are
simpler� The best way to see this is to implement both
and experiment with di�erent inputs�

Since the di�erence between the two programs will be
limited to a multiplicative constant factor� the details
of how you program each algorithm will make a big
di�erence�

If you don�t want to believe me when I say Quicksort is
faster� I won�t argue with you� It is a question whose
solution lies outside the tools we are using�



Randomization

Suppose you are writing a sorting program� to run on
data given to you by your worst enemy� Quicksort is
good on average� but bad on certain worst�case in�
stances�

If you used Quicksort� what kind of data would your
enemy give you to run it on� Exactly the worst�case
instance� to make you look bad�

But instead of picking the median of three or the �rst
element as pivot� suppose you picked the pivot element
at random�

Now your enemy cannot design a worst�case instance
to give to you� because no matter which data they give
you� you would have the same probability of picking a
good pivot�

Randomization is a very important and useful idea� By
either picking a random pivot or scrambling the per�
mutation before sorting it� we can say�

�With high probability� randomized quicksort
runs in ��n lgn� time��

Where before� all we could say is�

�If you give me random input data� quicksort
runs in expected ��n lgn� time��



Since the time bound how does not depend upon your
input distribution� this means that unless we are ex�
tremely unlucky �as opposed to ill prepared or unpop�
ular� we will certainly get good performance�

Randomization is a general tool to improve algorithms
with bad worst�case but good average�case complexity�

The worst�case is still there� but we almost certainly
won�t see it�




