
Rules for Algorithm Design
The secret to successful algorithm design� and prob�
lem solving in general� is to make sure you ask the
right questions� Below� I give a possible series of ques�
tions for you to ask yourself as you try to solve di�cult
algorithm design problems�

�� Do I really understand the problem�

�a� What exactly does the input consist of�

�b� What exactly are the desired results or output�

�c� Can I construct some examples small enough
to solve by hand� What happens when I solve
them�

�d� Are you trying to solve a numerical problem� A
graph algorithm problem� A geometric prob�
lem� A string problem� A set problem� Might
your problem be formulated in more than one
way� Which formulation seems easiest�

�� Can I �nd a simple algorithm for the problem�

�a� Can I �nd the solve my problem exactly by
searching all subsets or arrangements and pick�
ing the best one�

i� If so� why am I sure that this algorithm al�
ways gives the correct answer�

ii� How do I measure the quality of a solution
once I construct it�



iii� Does this simple� slow solution run in poly�
nomial or exponential time�

iv� If I can�t �nd a slow� guaranteed correct al�
gorithm� am I sure that my problem is well
de�ned enough to permit a solution�

�b� Can I solve my problem by repeatedly trying
some heuristic rule� like picking the biggest
item �rst� The smallest item �rst� A random
item �rst�

i� If so� on what types of inputs does this heuris�
tic rule work well� Do these correspond to
the types of inputs that might arise in the
application�

ii� On what types of inputs does this heuristic
rule work badly� If no such examples can
be found� can I show that in fact it always
works well�

iii� How fast does my heuristic rule come up
with an answer�

�� Are there special cases of this problem I know how
to solve exactly�

�a� Can I solve it e�ciently when I ignore some of
the input parameters�

�b� What happens when I set some of the input
parameters to trivial values� such as � or ��

�c� Can I simplify the problem to create a problem



I can solve e�ciently� How simple do I have
to make it�

�d� If I can solve a certain special case� why can�t
this be generalized to a wider class of inputs�

�� Which of the standard algorithm design paradigms
seem most relevant to the problem�

�a� Is there a set of items which can be sorted by
size or some key� Does this sorted order make
it easier to �nd what might be the answer�

�b� Is there a way to split the problem in two
smaller problems� perhaps by doing a binary
search� or a partition of the elements into big
and small� or left and right� If so� does this
suggest a divide�and�conquer algorithm�

�c� Are there certain operations being repeatedly
done on the same data� such as searching it for
some element� or �nding the largest�smallest
remaining element� If so� can I use a data
structure of speed up these queries� like hash
tables or a heap�priority queue�

�� Am I still stumped�

�a� Why don�t I go back to the beginning of the
list and work through the questions again� Do
any of my answers from the �rst trip change
on the second�




