Can we sort in better than
nlgn?

Any comparison-based sorting program can be thought
of as defining a decision tree of possible executions.

Running the same program twice on the same per-
mutation causes it to do exactly the same thing, but
running it on different permutations of the same data
causes a different sequence of comparisons to be made
on each.

(1,32 (31,2 (2,31) (32,1

Claim: the height of this decision tree is the worst-case
complexity of sorting.

Once you believe this, a lower bound on the time com-
plexity of sorting follows easily.

Since any two different permutations of n elements
requires a different sequence of steps to sort, there
must be at least n! different paths from the root to
leaves in the decision tree, ie. at least n! different
leaves in the tree.

Since only binary comparisons (less than or greater
than) are used, the decision tree is a binary tree.

Since a binary tree of height h has at most oh leaves,
we know n! < 2" or h > Ig(n!).

By inspection n! > (n/2)n/2, since the last n/2 terms of
the product are each greater than n/2. By Sterling’s
approximation, a better bound is n! > (n/e)™ where
e = 2.718.

h>l1g(n/e)” =nlgn—nlge = Q(nlgn)

Non-Comparison-Based Sorting

All the sorting algorithms we have seen assume binary
comparisons as the basic primative, questions of the
form “is xz before y7”.

Suppose you were given a deck of playing cards to sort.
Most likely you would set up 13 piles and put all cards
with the same number in one pile.

A 23456789 10JQK
A 23456789 10JQK
A 23456789 10JQK
A 23456789 10JQK

With only a constant number of cards left in each pile,
you can use insertion sort to order by suite and con-
catenate everything together.

If we could find the correct pile for each card in con-
stant time, and each pile gets O(1) cards, this algo-
rithm takes O(n) time.

Bucketsort

Suppose we are sorting n numbers from 1 to m, where
we know the numbers are approximately uniformly dis-
tributed.

We can set up n buckets, each responsible for an in-
terval of m/n numbers from 1 to m

I N N e

1 mn m/n+l 2m/n 2m/n+1 3m/n m

Given an input number z, it belongs in bucket number

If we use an array of buckets, each item gets mapped
to the right bucket in O(1) time.

With uniformly distributed keys, the expected number
of items per bucket is 1. Thus sorting each bucket
takes O(1) time!

The total effort of bucketing, sorting buckets, and con-
catenating the sorted buckets together is O(n).

What happened to our Q(nlgn) lower bound!

We can use bucketsort effectively whenever we under-
stand the distribution of the data.

However, bad things happen when we assume the wrong
distribution.

Suppose in the previous example all the keys happened
to be 1. After the bucketing phase, we have:

X X

x X x X
X

X %X x .

Xy XX
ST || | || ||

1 m/n m/n+l 2m/n 2m/n+1 3m/n . o m

We spent linear time distributing our items into buckets
and learned nothing. Perhaps we could split the big
bucket recursively, but it is not certain that we will
ever win unless we understand the distribution.

Problems like this are why we worry about the worst-
case performance of algorithms!

Such distribution techniques can be used on strings
instead of just numbers. The buckets will correspond
to letter ranges instead of just number ranges.

The worst case ‘shouldn’t” happen if we understand
the distribution of our data.

Real World Distributions

Consider the distribution of names in a telephone book.
e Will there be a lot of Skiena’s?
e Will there be a lot of Smith’s?
e Will there be a lot of Shifflitt's?

Either make sure you understand your data, or use a
good worst-case or randomized algorithm!

The Shifflett’s of
Charlottesville

For comparison, note that there are seven Shifflett’s
(of various spellings) in the 1000 page Manhattan tele-
phone directory.

