
Can we sort in better than
n lgn�

Any comparison�based sorting program can be thought
of as de�ning a decision tree of possible executions�

Running the same program twice on the same per�
mutation causes it to do exactly the same thing� but
running it on di
erent permutations of the same data
causes a di
erent sequence of comparisons to be made
on each�

a1 < a2 ?

a1 < a3 ?a2 < a3 ?

a1 < a3 ?(1,2,3) (2,1,3) a2 < a3 ?

(1,3,2) (3,1,2) (2,3,1) (3,2,1)

T F

T

T

T

T

F

F

F

F

Claim� the height of this decision tree is the worst�case
complexity of sorting�



Once you believe this� a lower bound on the time com�
plexity of sorting follows easily�

Since any two di
erent permutations of n elements
requires a di
erent sequence of steps to sort� there
must be at least n� di
erent paths from the root to
leaves in the decision tree� ie� at least n� di
erent
leaves in the tree�

Since only binary comparisons �less than or greater
than� are used� the decision tree is a binary tree�

Since a binary tree of height h has at most �h leaves�
we know n� � �h� or h � lg�n���

By inspection n� � �n���n��� since the last n�� terms of
the product are each greater than n��� By Sterling�s
approximation� a better bound is n� � �n�e�n where
e� ������

h � lg�n�e�n � n lgn� n lg e � ��n lgn�



Non�Comparison�Based Sorting

All the sorting algorithms we have seen assume binary
comparisons as the basic primative� questions of the
form �is x before y���

Suppose you were given a deck of playing cards to sort�
Most likely you would set up �� piles and put all cards
with the same number in one pile�

A � � � � � � � � �	 J Q K

A � � � � � � � � �	 J Q K

A � � � � � � � � �	 J Q K

A � � � � � � � � �	 J Q K

With only a constant number of cards left in each pile�
you can use insertion sort to order by suite and con�
catenate everything together�

If we could �nd the correct pile for each card in con�
stant time� and each pile gets O��� cards� this algo�
rithm takes O�n� time�



Bucketsort

Suppose we are sorting n numbers from � to m� where
we know the numbers are approximately uniformly dis�
tributed�

We can set up n buckets� each responsible for an in�
terval of m�n numbers from � to m

1 m/n m/n+1 2m/n 2m/n+1 3m/n ... ... m

x x x x x xx x

Given an input number x� it belongs in bucket number
dxn�me�

If we use an array of buckets� each item gets mapped
to the right bucket in O��� time�

With uniformly distributed keys� the expected number
of items per bucket is �� Thus sorting each bucket
takes O��� time�

The total e
ort of bucketing� sorting buckets� and con�
catenating the sorted buckets together is O�n��

What happened to our ��n lgn� lower bound�



We can use bucketsort e
ectively whenever we under�
stand the distribution of the data�

However� bad things happen when we assume the wrong
distribution�

Suppose in the previous example all the keys happened
to be �� After the bucketing phase� we have�

1 m/n m/n+1 2m/n 2m/n+1 3m/n ... ... m

xx x

x x x
x

x

x

xx x

xx

xx

xx

We spent linear time distributing our items into buckets
and learned nothing� Perhaps we could split the big
bucket recursively� but it is not certain that we will
ever win unless we understand the distribution�

Problems like this are why we worry about the worst�
case performance of algorithms�

Such distribution techniques can be used on strings
instead of just numbers� The buckets will correspond
to letter ranges instead of just number ranges�

The worst case �shouldn�t� happen if we understand
the distribution of our data�



Real World Distributions

Consider the distribution of names in a telephone book�

� Will there be a lot of Skiena�s�

� Will there be a lot of Smith�s�

� Will there be a lot of Shi�itt�s�

Either make sure you understand your data� or use a
good worst�case or randomized algorithm�



The Shi�ett�s of
Charlottesville

For comparison� note that there are seven Shi�ett�s
�of various spellings� in the ���� page Manhattan tele�
phone directory�




