
Hash Tables

Hash tables are a very practical way to maintain a dic�
tionary� As with bucket sort� it assumes we know that
the distribution of keys is fairly well�behaved�

The idea is simply that looking an item up in an array
is ���� once you have its index� A hash function is a
mathematical function which maps keys to integers�

In bucket sort� our hash function mapped the key to a
bucket based on the �rst letters of the key� �Collisions�
were the set of keys mapped to the same bucket�

If the keys were uniformly distributed� then each bucket
contains very few keys�

The resulting short lists were easily sorted� and could
just as easily be searched�

0 1 2 3 4 5 6 7 8 9 10 11

Hash Functions

It is the job of the hash function to map keys to inte�
gers� A good hash function�

�� Is cheap to evaluate

�� Tends to use all positions from � � � �M with uni�
form frequency�

�� Tends to put similar keys in di�erent parts of the
tables �Remember the Shi�etts���

The �rst step is usually to map the key to a big integer�
for example

h �

keylengthX

i��

���i � char�key�i��

This large number must be reduced to an integer whose
size is between � and the size of our hash table�

One way is by h�k� � k mod M� where M is best a
large prime not too close to �i � �� which would just
mask o� the high bits�

This works on the same principle as a roulette wheel�

Good and Bad Hash functions

The �rst three digits of the Social Security Number

0 1 2 3 4 5 6 87 9

The last three digits of the Social Security Number

0 1 2 3 4 5 6 87 9

The Birthday Paradox

No matter how good our hash function is� we had bet�
ter be prepared for collisions� because of the birthday
paradox�

J F M A M J J1 A S O N D

The probability of there being no collisions after n in�
sertion into an m�element table is

�m�m����m����m��������m�n����m� � �n��
i��

�m�i��m

When m � �

� this probability sinks below � � when
N � �� and to almost � when N � ���

20 40 60 80 100

0.2

0.4

0.6

0.8

1

Collision Resolution by
Chaining

The easiest approach is to let each element in the hash
table be a pointer to a list of keys�

Insertion� deletion� and query reduce to the problem in
linked lists� If the n keys are distributed uniformly in a
table of size m�n� each operation takes O�m�n� time�

Chaining is easy� but devotes a considerable amount of
memory to pointers� which could be used to make the
table larger� Still� it is my preferred method�

Open Addressing

We can dispense with all these pointers by using an
implicit reference derived from a simple function�

1 2 3 4 5 6 7 8 9 10 11

X X X X X

If the space we want to use is �lled� we can examine
the remaining locations�

�� Sequentially h� h��� h��� � � �

�� Quadratically h� h� ��� h���� h��� � � �

�� Linearly h� h� k� h��k� h��k� � � �

The reason for using a more complicated science is to
avoid long runs from similarly hashed keys�

Deletion in an open addressing scheme is ugly� since
removing one element can break a chain of insertions�
making some elements inaccessible�

Performance on Set
Operations

With either chaining or open addressing�

� Search � O��� expected� O�n� worst case

� Insert � O��� expected� O�n� worst case

� Delete � O��� expected� O�n� worst case

� Min� Max and Predecessor� Successor ��n � m�
expected and worst case

Pragmatically� a hash table is often the best data struc�
ture to maintain a dictionary� However� we will not use
it much in proving the e!ciency of our algorithms�
since the worst�case time is unpredictable�

The best worst�case bounds come from balanced bi�
nary trees� such as red�black trees�

