Elementary Data Structures

“Mankinds’s progress is measured by the number of
things we can do without thinking.”

Elementary data structures such as stacks, queues,
lists, and heaps will be the “of-the-shelf” components
we build our algorithm from. There are two aspects to
any data structure:

e T he abstract operations which it supports.
e T he implementatiton of these operations.

The fact that we can describe the behavior of our data
structures in terms of abstract operations explains why
we can use them without thinking, while the fact that
we have different implementation of the same abstract
operations enables us to optimize performance.

Stacks and Queues

Sometimes, the order in which we retrieve data is inde-
pendant of its content, being only a function of when
it arrived.

A stack supports last-in, first-out operations: push and
pop.

A queue supports first-in, first-out operations: enqueue
and dequeue.

A deque is a double ended queue and supports all four
operations: push, pop, enqueue, dequeue.

Lines in banks are based on queues, while food in my
refrigerator is treated as a stack.

Both can be used to traverse a tree, but the order is
completely different.

Queue Stack

Which order is better for WWW crawler robots?

Stack Implementation

Although this implementation uses an array, a linked
list would eliminate the need to declare the array size
in advance.

STACK-EMPTY(S)
if top[S] = 0
then return TRUE
else return FALSE

PUSH(S, x)
top[S] < top[S] + 1
S[top[S] «+— =

POP(S)
if STACK-EMPTY(S)
then error “underflow”
else top[S] « top[S] — 1
return S[top[S] + 1]

top

RN (WA

All are O(1) time operations.

Queue Implementation

A circular queue implementation requires pointers to
the head and tail elements, and wraps around to reuse
array elements.

ENQUEUE(Q, x)

Q[tail[Q]] « X
if tail[Q] = length[Q]
then tail[Q] <« 1

else tail[Q] « tail[Q] + 1

tail head

DEQUEUE(Q)
X = Qlhead[Q]]
if head[Q] = length[Q]
then head[Q] = 1
else head[Q] = head[Q] + 1
return X

A list-based implementation would eliminate the pos-
sibility of overflow.

All are O(1) time operations.

Dynamic Set Operations

Perhaps the most important class of data structures
maintain a set of items, indexed by keys.

There are a variety of implementations of these dic-
tionary operations, each of which yield different time
bounds for various operations.

e Search(S,k) — A query that, given a set S and a
key value k, returns a pointer £ to an element in
S such that key[z] = k, or nil if no such element
belongs to S.

e Insert(S,x) — A modifying operation that augments
the set S with the element =z.

e Delete(S,x) — Given a pointer z to an element in
the set S, remove z from S. Observe we are given
a pointer to an element z, not a key value.

e Min(S), Max(S) — Returns the element of the to-
tally ordered set S which has the smallest (largest)
key.

e Next(S,x), Previous(S,x) — Given an element =z
whose key is from a totally ordered set S, returns
the next largest (smallest) element in S, or NIL if
z is the maximum (minimum) element.

Pointer Based Implementation

We can also maintain a directory in either a singly or
doubly linked list.

L%

D |

\[m]

Al _-lB| Jc|

\WJ

¢ D E F
/i/i/J/il

| A

LB |

We gain extra flexibility on predecessor queries at a cost
of doubling the number of pointers by using doubly-
linked lists.

Since the extra big-Oh costs of doubly-linkly lists is
zero, we will usually assume they are, althought it
might not be necessary.

Singly linked to doubly-linked list is as a Conga line is
to a Can-Can line.

Array Based Sets

Unsorted Arrays
e Search(S,k) - sequential search, O(n)
e Insert(S,x) - place in first empty spot, O(1)
e Delete(S,x) - copy nth item to the zth spot, O(1)
e Min(S,x), Max(S,x) - sequential search, O(n)

e Successor(S,x), Predecessor(S,x) - sequential search,
O(n)

Sorted Arrays
e Search(S,k) - binary search, O(lgn)

e Insert(S,x) - search, then move to make space,
O(n)

e Delete(S,x) - move to fill up the hole, O(n)
e Min(S,x), Max(S,x) - first or last element, O(1)

e Successor(S,x), Predecessor(S,x) - Add or sub-
tract 1 from pointer, O(1)

What are the costs for a heap?

Unsorted List Implementation

LIST-SEARCH(L, k)
r = head][L]
while x <> NIL and key[z] <> k
do z = next[X]
return x

Note: the while loop might require two lines in some
programming languages.

DELETION

HEAD(L) l X

; -
X . T
i =

INSERTION

LIST-INSERT(L, Xx)
next[x] = head][L]
if head[L] <> NIL
then prev[head[L]] = x
head[L] = x
prev[x] = NIL

LIST-DELETE(L, X)
if prev[z] <> NIL
then next[prev[x]] = next[x]
else head[L] = next[X]
if next[r] <> NIL
then prev[next[x]] = prev][X]

Sentinels

Boundary conditions can be eliminated using a sentinel
element which doesn’'t go away.

@////
()

LIST-SEARCH’(L, k)
xz = next[nil[L]]
while x <> NIL[L] and key[z] <> k
do z = next[X]
return x

LIST-INSERT(L, X)
next[x] = next[nil[L]]
prev[next[nil[L]]] = X
next[nil[L]] = X
prev[x] = NILJ[L]

LIST-DELETE'(L, x)
next[prev[x]] <> next[x]
next[prev[x]] = prev[x]

