
Elementary Data Structures

�Mankinds�s progress is measured by the number of
things we can do without thinking��

Elementary data structures such as stacks� queues�
lists� and heaps will be the �of�the�shelf� components
we build our algorithm from� There are two aspects to
any data structure�

� The abstract operations which it supports�

� The implementatiton of these operations�

The fact that we can describe the behavior of our data
structures in terms of abstract operations explains why
we can use them without thinking� while the fact that
we have di�erent implementation of the same abstract
operations enables us to optimize performance�



Stacks and Queues

Sometimes� the order in which we retrieve data is inde�
pendant of its content� being only a function of when
it arrived�

A stack supports last�in� �rst�out operations� push and
pop�

A queue supports �rst�in� �rst�out operations� enqueue
and dequeue�

A deque is a double ended queue and supports all four
operations� push� pop� enqueue� dequeue�

Lines in banks are based on queues� while food in my
refrigerator is treated as a stack�

Both can be used to traverse a tree� but the order is
completely di�erent�

1

2 3

4 5 6 7

1

5 2

7 6 4 3

StackQueue

Which order is better for WWW crawler robots�



Stack Implementation

Although this implementation uses an array� a linked
list would eliminate the need to declare the array size
in advance�

STACK�EMPTY�S�
if top�S� � �

then return TRUE
else return FALSE

PUSH�S� x�
top�S� � top�S� � �
S�top�S� � x

POP�S�
if STACK�EMPTY�S�

then error �under�ow�
else top�S� � top�S�� �

return S�top�S� � ��

1

2

3

4 top

All are O��� time operations�



Queue Implementation

A circular queue implementation requires pointers to
the head and tail elements� and wraps around to reuse
array elements�

ENQUEUE�Q� x�
Q�tail�Q�� � x
if tail�Q� � length�Q�

then tail�Q� � �
else tail�Q� � tail�Q� � �

tail head

X X X

DEQUEUE�Q�
x � Q�head�Q��
if head�Q� � length�Q�

then head�Q� � �
else head�Q� � head�Q� � �

return x

A list�based implementation would eliminate the pos�
sibility of over�ow�

All are O��� time operations�



Dynamic Set Operations

Perhaps the most important class of data structures
maintain a set of items� indexed by keys�

There are a variety of implementations of these dic�
tionary operations� each of which yield di�erent time
bounds for various operations�

� Search�S�k	 � A query that� given a set S and a
key value k� returns a pointer x to an element in
S such that key�x� � k� or nil if no such element
belongs to S�

� Insert�S�x	 � A modifying operation that augments
the set S with the element x�

� Delete�S�x	 � Given a pointer x to an element in
the set S� remove x from S� Observe we are given
a pointer to an element x� not a key value�

� Min�S	� Max�S	 � Returns the element of the to�
tally ordered set S which has the smallest �largest�
key�

� Next�S�x	� Previous�S�x	 � Given an element x
whose key is from a totally ordered set S� returns
the next largest �smallest� element in S� or NIL if
x is the maximum �minimum� element�



Pointer Based Implementation

We can also maintain a directory in either a singly or
doubly linked list�

L

L

A B C D E F

A B C D E F

We gain extra �exibility on predecessor queries at a cost
of doubling the number of pointers by using doubly�
linked lists�

Since the extra big�Oh costs of doubly�linkly lists is
zero� we will usually assume they are� althought it
might not be necessary�

Singly linked to doubly�linked list is as a Conga line is
to a Can�Can line�



Array Based Sets

Unsorted Arrays

� Search�S�k� � sequential search� O�n�

� Insert�S�x� � place in �rst empty spot� O���

� Delete�S�x� � copy nth item to the xth spot� O���

� Min�S�x�� Max�S�x� � sequential search� O�n�

� Successor�S�x�� Predecessor�S�x� � sequential search�
O�n�

Sorted Arrays

� Search�S�k� � binary search� O�lgn�

� Insert�S�x� � search� then move to make space�
O�n�

� Delete�S�x� � move to �ll up the hole� O�n�

� Min�S�x�� Max�S�x� � �rst or last element� O���

� Successor�S�x�� Predecessor�S�x� � Add or sub�
tract � from pointer� O���

What are the costs for a heap�



Unsorted List Implementation
LIST�SEARCH�L� k�

x � head�L�
while x �� NIL and key�x� �� k

do x � next�x�
return x

Note� the while loop might require two lines in some
programming languages�

HEAD(L)

X

X

INSERTION

DELETION

LIST�INSERT�L� x�
next�x� � head�L�
if head�L� �� NIL

then prev�head�L�� � x
head�L� � x
prev�x� � NIL

LIST�DELETE�L� x�
if prev�x� �� NIL

then next�prev�x�� � next�x�
else head�L� � next�x�

if next�x� �� NIL
then prev�next�x�� � prev�x�



Sentinels

Boundary conditions can be eliminated using a sentinel
element which doesn�t go away�

NIL

LIST�SEARCH��L� k�
x � next�nil�L��
while x �� NIL�L� and key�x� �� k

do x � next�x�
return x

LIST�INSERT��L� x�
next�x� � next�nil�L��
prev�next�nil�L��� � x
next�nil�L�� � x
prev�x� � NIL�L�

LIST�DELETE��L� x�
next�prev�x�� �� next�x�
next�prev�x�� � prev�x�




