9.1-3 Show that there is no sorting algorithm which sorts at least $\left(1 / 2^{n}\right) \times n$! instances in $O(n)$ time.

Think of the decision tree which can do thsi. What is the shortest tree with $\left(1 / 2^{n}\right) \times n$! leaves?

$$
\begin{aligned}
h>\lg \left(n!/ 2^{n}\right) & =\lg (n!)-\lg \left(2^{n}\right) \\
& =\Theta(n \lg n)-n \\
& =\Theta(n \lg n)
\end{aligned}
$$

Moral: there cannot be too many good cases for any sorting algorithm!
9.1-4 Show that the $\Omega(n \lg n)$ lower bound for sorting still holds with ternary comparisons.

The maximum number of leaves in a tree of height h is 3^{h},

$$
\lg _{3}(n!)=\Theta(n \lg n)
$$

So it goes for any constant base.

