
Binary Search Trees


I think that I shall never see
a poem as lovely as a tree Poem�s
are wrote by fools like me but only
G�d can make a tree 

� Joyce Kilmer

Binary search trees provide a data structure which ef�
�ciently supports all six dictionary operations�

A binary tree is a rooted tree where each node contains
at most two children�

Each child can be identi�ed as either a left or right
child�

parent

rightleft

A binary tree can be implemented where each node
has left and right pointer �elds� an �optional� parent

pointer� and a data �eld�



Binary Search Trees

A binary search tree labels each node in a binary tree
with a single key such that for any node x� and nodes
in the left subtree of x have keys � x and all nodes in
the right subtree of x have key�s � x�

2

3

7

6 8

5

8

5

32

7

6

Left	 A binary search tree� Right	 A heap but not a
binary search tree�

The search tree labeling enables us to �nd where any
key is� Start at the root � if that is not the one we want�
search either left or right depending upon whether what
we want is � or � then root�



Searching in a Binary Tree

Dictionary search operations are easy in binary trees ���

TREE�SEARCH�x� k�
if �x � NIL� or �k � key�x��

then return x
if �k � key�x��

then return TREE�SEARCH�left�x��k�
else return TREE�SEARCH�right�x��k�

The algorithm works because both the left and right
subtrees of a binary search tree are binary search trees
� recursive structure� recursive algorithm�

This takes time proportional to the height of the tree�
O�h��



Maximum and Minimum

Where are the maximum and minimum elements in a
binary tree�

TREE�MAXIMUM�X�
while right�x� �� NIL

do x � right�x�
return x

TREE�MINIMUM�x�
while left�x� �� NIL

do x � left�x�
return x

Both take time proportional to the height of the tree�
O�h��



Where is the predecessor�

Where is the predecessor of a node in a tree� assuming
all keys are distinct�

X

PREDECESSOR(X) SUCCESSOR(X)

If X has two children� its predecessor is the maximum
value in its left subtree and its successor the minimum
value in its right subtree�



X

predecessor(x)

If it does not have a left child� a node�s predecessor is
its �rst left ancestor�

The proof of correctness comes from looking at the
in�order traversal of the tree�



H

A

F

GB

D

C E

Tree�Successor�x�
if right�x� �� NIL

then return Tree�Minimum�right�x��
y � p�x�

while �y �� NIL� and �x � right�y��
do x� y
y � p�y�

return y

Tree predecessor�successor both run in time propor�
tional to the height of the tree�

Inorder�Tree�walk�x�
if �x �� NIL�
then Inorder�Tree�Walk�left�x��

print key�x�
Inorder�Tree�walk�right�x��

A�B�C�D�E�F�G�H



Tree Insertion

Do a binary search to �nd where it should be� then
replace the termination NIL pointer with the new item�

LEAF INSERTION FIGURE

Tree�insert�T� z�
y � NIL
x � root�T �
while x �� NIL

do y � x
if key�z� � key�x�

then x � left�x�
else x� right�x�

p�z�� y
if y � NIL

then root�T � � z
else if key�z� � key�y�

then left�y�� z
else right�y� � z

y is maintained as the parent of x� since x eventually
becomes NIL�

The �nal test establishes whether the NIL was a left
or right turn from y�

Insertion takes time proportional to the height of the
tree� O�h��



Tree Deletion

Deletion is somewhat more tricky than insertion� be�
cause the node to die may not be a leaf� and thus e�ect
other nodes�

Case �a�� where the node is a leaf� is simple � just NIL
out the parents child pointer�

Case �b�� where a node has one chld� the doomed node
can just be cut out�

Case �c�� relabel the node as its successor �which has
at most one child when z has two children�� and delete
the successor�

This implementation of deletion assumes parent point�
ers to make the code nicer� but if you had to save space
they could be dispensed with by keeping the pointers
on the search path stored in a stack�

Tree�Delete�T� z�
if �left�z� � NIL� or �right�z� � NIL�

then y � z
else y � Tree�Successor�z�

if left�y� �� NIL
then x� left�y�
else x� right�y�

if x �� NIL
then p�x�� p�y�

if p�y� � NIL
then root�T � � x
else if �y � left�p�y���



then left�p�y��� x
else right�p�y�� � x

if �y �� z�
then key�z�� key�y�

�� If y has other �elds� copy them� too� ��
return y

Lines ��� determine which node y is physically removed�

Lines ��� identify x as the non�nil decendant� if any�

Lines ��� give x a new parent�

Lines ���� modify the root node� if necessary

Lines ����� reattach the subtree� if necessary�

Lines ����� if the removed node is deleted� copy�

Conclusion	 deletion takes time proportional to the
height of the tree�



Balanced Search Trees
All six of our dictionary operations� when implemented
with binary search trees� take O�h�� where h is the
height of the tree�

The best height we could hope to get is lgn� if the
tree was perfectly balanced� since

Pblgnc
i�� �i � n

But if we get unlucky with our order of insertion or
deletion� we could get linear height�

insert�a�
insert�b�
insert�c�
insert�d�
���

A

B

C

D

In fact� random search trees on average have ��lgN�
height� but we are worried about worst case height�

We can�t easily use randomization � Why�



Perfectly Balanced Trees

Perfectly balanced trees require a lot of work to main�
tain	

9

5 13

11 15

1412108

7

64

3

2

1

16

If we insert the key �� we must move every single node
in the tree to rebalance it� taking ��n� time�

Therefore� when we talk about �balanced� trees� we
mean trees whose height is O�lgn�� so all dictionary
operations �insert� delete� search� min�max� succes�
sor�predecessor� take O�lgn� time�

Red�Black trees are binary search trees where each
node is assigned a color� where the coloring scheme
helps us maintain the height as ��lgn��




