Graph Definitions

Definition 1. An undirected graph G is a pair (V, E) where

- V is the set of vertices,
- $E \subseteq V^2$ is the set of edges (unordered pairs)

 $E = \{ (u, v) \mid u, v \in V \}.$

In a **directed** graph the edges have directions (ordered pairs).

A weighted graph includes a weight function

$$w: E \to R$$

attaching a value (weight) to each edge.

– Typeset by Foil $T_{\!E\!} \! X$ –

Definition 2. A path in a graph G = (V, E) is a sequence of vertices $v_1, v_2, ..., v_k$ such that for $1 \le i \le k - 1$, $(v_i, v_{i+1}) \in E$.

Definition 3. A cycle in a graph G = (V, E) is a path $v_1, v_2, ..., v_k$ such that $(v_k, v_1) \in E$.

Definition 4. A tree is a graph with no cycles.

Definition 5. A graph H = (V', E') is a subgraph of G = (V, E) iff $V' \subseteq V$ and $E' \subseteq E$. A spanning subgraph if V' = V.

Graph Representation

Adjacency List: A link list for each vertex. The list contains a pointer to each neighbor of the vertex. (and a weight for weighted graph.)

Total space O(V + E).

Sequential (linear) access.

Adjacency Matrix: A $|V| \times |V|$ array, A[i, j] = 1iff (i, j) is an edge in the graph, otherwise A[i, j] = 0. $(A[i, j] = w_{i,j}$ for weighted graph.)

Total space $O(V^2)$.

Random access.

Spanning Tree

Given a graph G=(V,E) a spanning tree T in G is a subgraph of G that

- is connected;
- includes all the vertices of G;
- has no cycles;

Spanning Tree Characterization

Theorem 1. A spanning tree T in a connected graph G = (V, E) is a maximal subgraph of G that is a tree (i.e. any edge added to T closes a cycle).

Proof. Proof by contradiction:

Assume that T is a spanning tree in G, and adding edge (v, u) to T does not close a cycle.

There are paths from w to v, and from w to u using only edges of T (since it's a spanning tree).

Thus, the path w to v, the edge (v, u) and the path u to w must include a cycle. \Box

The Size of a Spanning Tree

Lemma 1. A spanning tree of a connected graph G = (V, E) has |V| - 1 edges.

Proof.

Let T be a spanning tree of G. Fix a vertex w in T. There is a **unique** path from w to any other vertex in T.

For all $u \in V$ If an edge (u, v) was the last edge on the path from w to u direct the edge to u.

This process gives a unique direction to each edge.

Associate an edge with the vertex it is pointing to.

We have a 1-1 correspondence between the edges of T and the set $V - \{w\}$. \Box

Spanning Tree Algorithm

Spanning_Tree(G)

- 1. $VT \leftarrow \emptyset$;
- 2. $ET \leftarrow \emptyset$;
- 3. For i = 1 to |E| do

3.1 If $\{e_i\} \cup ET$ has no cycles then 3.1.1. $VT \leftarrow VT \cup e_i$; 3.1.2. $ET \leftarrow ET \cup \{e_i\}$;

Correctness

Theorem 2. The algorithm computes a spanning tree in G.

Proof. The algorithm generates a maximal tree subgraph of G. \Box

Minimum Weighted Spanning Tree

Given a graph G = (V, E) and a **weight** function $w : E \to R$ (on the edges), a weight of a spanning tree T = (V, E(T)) is

$$w(T) = \sum_{e \in E(T)} w(e).$$

A minimum spanning tree of G with weight function w, is a spanning tree of G with minimum weight.

Theorem 3. Let T = (V(T), E(T)) be a minimum spanning tree of G. Let S = (V(S), E(S)) be a subgraph of T. Let e be an edge of minimum weight among all edges that do not close a cycle with edges in E(S), then $E(S) \cup \{e\}$ is a subgraph of a minimum spanning tree of G.

Proof. If $e \in E(T)$ we are done.

Assume that $e \notin E(T)$. Add the edge e to T, we get a cycle with at least one edge $e' \notin E(S)$, thus $w(e') \ge w(e)$.

Let $T' = (V, E(T) + \{e\} - \{e'\}).$

T' is a spanning tree, and $w(T') \leq w(T)$, therefore it is also a minimum spanning tree.

Minimum Spanning Tree Algorithm

Minimum Spanning Tree (G, w)

- 1. $Q \leftarrow E$;
- 2. $E(T) \leftarrow \emptyset$;
- 3. $V(T) \leftarrow \emptyset$;
- 4. For i = 1 to V 1 do

4.1
$$e \leftarrow Min(Q)$$
;
4.2 $E(T) \leftarrow E(T) \cup \{e\}$;
4.3 $V(T) \leftarrow V(T) \cup$ vertices of e .;
4.4 $Q \leftarrow Q - \{e\}$;
4.5 For all $e \in Q$
4.5.1. If $e \cup E(T)$ close a cycle then $Q \leftarrow Q - \{e\}$;

Greedy Algorithm

A greedy algorithm makes a sequence of local optimal choices.

Under various conditions greedy construction is optimal, i.e. local optimal choices lead to global optimal solution, and there is no need for backtracking - but not always!

Analysis

Theorem 4. The algorithm constructs a minimum spanning tree.

Proof. We prove by induction on the size of the set E(T), that E(T) is always a subset of a minimum spanning tree.

The induction hypothesis holds for $E(T) = \emptyset$.

Assume that it holds for |E(T)| = i - 1, then by the above theorem and the choice of the algorithm the claim holds for |E(T)| = i.

Thus, also holds for |E(T)| = |V| - 1. \Box