Graph Definitions

Definition 1. An undirected graph G is a pair (V, E) where

- V is the set of vertices,
- $E \subseteq V^2$ is the set of edges (unordered pairs)

 $E = \{ (u, v) \mid u, v \in V \}.$

In a **directed** graph the edges have directions (ordered pairs).

A weighted graph includes a weight function

$$w: E \to R$$

attaching a value (weight) to each edge.

– Typeset by FoilT $_{\!E\!} \! \mathrm{X}$ –

Definition 2. A path in a graph G = (V, E) is a sequence of vertices $v_1, v_2, ..., v_k$ such that for $1 \le i \le k - 1$, $(v_i, v_{i+1}) \in E$.

Definition 3. A cycle in a graph G = (V, E) is a path $v_1, v_2, ..., v_k$ such that $(v_k, v_1) \in E$.

Definition 4. A tree is a graph with no cycles.

Definition 5. A graph H = (V', E') is a subgraph of G = (V, E) iff $V' \subseteq V$ and $E' \subseteq E$. A spanning subgraph if V' = V.

Graph Representation

Adjacency List: A link list for each vertex. The list contains a pointer to each neighbor of the vertex. (and a weight for weighted graph.)

Total space O(V + E).

Sequential (linear) access.

Adjacency Matrix: A $|V| \times |V|$ array, A[i, j] = 1iff (i, j) is an edge in the graph, otherwise A[i, j] = 0. $(A[i, j] = w_{i,j}$ for weighted graph.)

Total space $O(V^2)$.

Random access.

Spanning Tree

Given a graph G=(V,E) a spanning tree T in G is a subgraph of G that

- is connected;
- includes all the vertices of G;
- has no cycles;