Graph Definitions

Definition 1. An undirected graph G is a pair (V, E) where

- V is the set of vertices,
- $E \subseteq V^{2}$ is the set of edges (unordered pairs)

$$
E=\{(u, v) \mid u, v \in V\} .
$$

In a directed graph the edges have directions (ordered pairs).

A weighted graph includes a weight function

$$
w: E \rightarrow R
$$

attaching a value (weight) to each edge.

Definition 2. A path in a graph $G=(V, E)$ is a sequence of vertices $v_{1}, v_{2}, \ldots ., v_{k}$ such that for $1 \leq$ $i \leq k-1,\left(v_{i}, v_{i+1}\right) \in E$.

Definition 3. A cycle in a graph $G=(V, E)$ is a path $v_{1}, v_{2}, \ldots ., v_{k}$ such that $\left(v_{k}, v_{1}\right) \in E$.

Definition 4. A tree is a graph with no cycles.
Definition 5. A graph $H=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of $G=(V, E)$ iff $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. A spanning subgraph if $V^{\prime}=V$.

Graph Representation

Adjacency List: A link list for each vertex. The list contains a pointer to each neighbor of the vertex. (and a weight for weighted graph.)

Total space $O(V+E)$.
Sequential (linear) access.
Adjacency Matrix: A $|V| \times|V|$ array, $A[i, j]=1$ iff (i, j) is an edge in the graph, otherwise $A[i, j]=0$. ($A[i, j]=w_{i, j}$ for weighted graph.)

Total space $O\left(V^{2}\right)$.
Random access.

Spanning Tree

Given a graph $G=(V, E)$ a spanning tree T in G is a subgraph of G that

- is connected;
- includes all the vertices of G;
- has no cycles;

