Shortest Paths Problems

Input: a directed graph G=(V,E) and a **weight** function $w:E\to R$.

The weight of a path $p = v_0, v_1, v_2,, v_k$ is

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i).$$

The weight of the **shortest path** from u to v, $\delta(u,v)$ is the minimum of w(p) for all p connecting u to v, and ∞ if there is no such path in G.

Variants:

Single Source Shortest Paths - Compute shortest paths from a given source to all vertices in the graph.

Single Destination Shortest Paths: Compute shortest paths to a given destination from all vertices in the graph.

Single Pair Shortest Path - Compute shortest path for a given pair of vertices.

All Pairs Shortest Paths - Compute the shortest paths for all pairs of vertices in the graph.

Negative Weight

The problem is not well defined in the case of **negative cycle**.

Single Source Shortest Paths

Compute the shortest path from s to all vertices.

Lemma 1. If $p = v_0, v_1, ..., v_j, ..., v_k$ is a shortest path from v_0 to v_k , then $p' = v_0, v_1, ..., v_j$ is a shortest path from v_0 to v_j .

Proof. Assume that P'' is a shorter path from v_0 to v_j , then P'' followed by $v_{j+1},...,v_k$ would be a shorter path from v_0 to v_k . \square

The Dijkstra Algorithm

The algorithm constructs a **tree of shortest paths**.

The root of the tree is s.

A path on the tree corresponds to shortest paths to s for all vertices on that path.

The shortest paths tree is constructed in $\left|V\right|$ iterations.

Starting from $S=\emptyset$ and extending S by one vertex in each iteration, the algorithm computes a shortest paths tree restricted to internal vertices only from S.

When S=V we get the shortest paths tree for the graph.

For all $v \in V$, and in each iteration,

d[v] - the distance from s to v by a path that uses only vertices of S.

 $\pi[v]$ - the predecessor of v on the tree.

 $Extract_Min(Q)$ - the vertex with smaller d[v] among the vertices in Q.

The Dijkstra Algorithm

Dijkstra (G, w, s)

- 1. For all $v \in V$ do
 - 1.1 $d[v] \leftarrow \infty$;
 - 1.2 $\pi[v] \leftarrow NIL$;
- 2. d[s] = 0;
- 3. $S \leftarrow \emptyset$:
- 4. $Q \leftarrow V$;
- 5. While $Q \neq \emptyset$ do
 - 5.1 $u \leftarrow Extract_Min(Q)$;
 - 5.2 $S \leftarrow S \cup \{u\}$;
 - 5.3 For all $v \in Adj[u]$ do
 - 5.3.1. If d[v] > d[u] + w(u, v) then
 - 5.3.1.1. $d[v] \leftarrow d[u] + w(u, v)$;
 - 5.3.1.2. $\pi[v] \leftarrow u$;

Correctness

Theorem 1. The algorithm computes a correct shortest distance tree when applied to a graph G with no negative weight edges.

Proof.

We'll show by induction on the size of S that for every $1 \le k \le n$, at the end of the while loop with |S| = k, the functions $\pi[]$ and d[] satisfy:

- 1. If $v \in S$ then d[v] is the shortest path distance of v from s, and $\pi[v]$ encodes the last edge of that path.
- 2. If $v \notin S$ then d[v] is the shortest path of v from s using only internal vertices of S, and $\pi[v]$ encodes the last edge of that path.

The induction hypothesis holds for |S|=1 since in that case $S=\{s\}$, and for all v either d[v] is the weight of the edge (v,s) or ∞ .

Assume that the induction hypothesis holds for |S|=j-1. Consider the j-th iteration of the while loop:

Lemma 2. The shortest path from u to s uses only vertices of S.

Proof. Assume that a shorter path from u to s contains a vertex in Q. Let v be the first such vertex, then d[v] < d[u]. \square

Thus, 1 of the induction hypothesis is satisfied.

Lemma 3. If vertex $v \in Q$ had a correct value d[v] at the beginning of the while iteration, it has a correct value at the end of the iteration.

Proof.

By the lemma's assumption we need only to check paths from v to s that contain u.

The algorithm checks only paths in which \boldsymbol{v} is adjacent to \boldsymbol{u}

How about the remaining paths?

If there is a shorter path

$$P = s, v_1, v_2, ..., u, v_k, ..., v$$

with u not adjacent to v, then since v_k joined S before u, there must be a path from v_k to s that does not use u and is not longer. Thus, d[v] has the correct value without considering paths that use u. \square

2 of the induction hypothesis is satisfied. \Box

Run Time

Theorem 2. The algorithm terminates in $O(|V|^2)$ steps.

Proof.

1.1 + 1.2 takes O(|V|) time.

The **while** loop is executed O(|V|) times.

Each call to 5.1 takes O(|V|) steps, total work on 5.1 is $O(|V|^2)$.

The total number of iteration of the **for** loop (over all iterations of the **while** loop is $O(|E|) = O(|V|^2)$ steps. \Box