
Shortest Paths Problems

Input: a directed graph G = (V;E) and a weight

function w : E ! R.

The weight of a path p = v0; v1; v2; ::::; vk is

w(p) =

kX
i=1

w(vi�1; vi):

The weight of the shortest path from u to v,
Æ(u; v) is the minimum of w(p) for all p connecting u
to v, and 1 if there is no such path in G.
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All-Pairs Shortest Paths

Single-Source Shortest Paths:
Compute shortest paths from a given source to all
vertices in the graph.

All-Pairs Shortest Paths:
Given a graph G = (V;E), jV j = n, and a weight
function w on the edges, compute the shortest paths
between all pairs of vertices.

The problem is not well de�ned in the presence of
a negative weight cycle in the graph.
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All-Pairs Shortest Path Algorithms

We can solve an all-pairs shortest-paths problem
by running a single source shortest-paths algorithm n
times, once for each vertex as a source. Then the
running time is:

� O(n3) if we use the Dijkstra algorithm (assuming
no negative edge weights);

� O(n2jEj) if we use Bellman-Ford algorithm - i.e.,
O(n4) if the graph is dense.

Instead we will give a direct approach to �nding the
shortest paths between all pairs of vertices. We assume
that negative weights exist, but no negative weight
cycle.

First we will give an O(n4) algorithm, then improve
it to O(n3 log n). Later we will give a even better
algorithm running in O(n3) time.
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All Pairs Shortest Paths

Input: an adjacency matrixW where wi;j is the weight
of the edge (i; j):

wi;j =

8<
:

0 if i = j
weight of (i; j) if i 6= j and (i; j) 2 E
1 if (i; j) =2 E

Output:
A matrix D where di;j is the shortest path from i to j.
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The Basic Idea

De�ne d
(m)
i;j to be the shortest path between i and

j using paths of up to m edges. When m = 0, we
have

d
(0)
ij =

�
0 : i = j
1 : i 6= j

Recursively we de�ne,

d
(m)
i;j = min1�k�n

�
d
(m�1)
i;k + wk;j

�
:

If there are no negative weight cycles then no
shortest path has more than n� 1 edges.

How to compute these matrices?
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Computing the Matrices

De�ne a sequence of matricesD(1); D(2); :::D(n�1),

where form = 1; 2; : : : ; n�1, we haveD(m) =
�
d
(m)
ij

�
.

Note that D(1) =W .

The key procedure is to compute the matrix D(m)

given D(m�1) and W : extending the shortest paths
computed so far by one more edge.
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Theorem 1. The procedure EXTEND-SHORTEST-
PATHS(D(m�1);W ) returns the matrix D0 = D(m).

Theorem 2. For n � n matrices D and W , the
procedure EXTEND-SHORTEST-PATHS(D(m�1);W )
takes �(n3) steps.
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Slow All-Pairs Algorithm

Theorem 3. The SLOW-ALL-PAIRS-SHORTEST-
PATHS algorithm computes the correct shortest paths
and terminates in �(n4) steps.
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Shortest Paths and Matrix Multiplication

EXTEND-SHORTEST-PATHS procedure is closely
related to MATRIX-MULTIPLY.

Let C = A �B be the product of two n�n matrices
A and B. For i; j = 1; 2; : : : ; n, we compute

cij =

nX
k=1

aik � bkj

Note that by substituting,

d(m�1) ! a

w ! b

d(m) ! c

min! +

+! �

{ Typeset by FoilTEX { 9



in

d
(m)
i;j = min1�k�n

�
d
(m�1)
i;k + wk;j

�
we get matrix multiplication.
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Repeated Squaring

Let D0 = D � W , where the operation � is
the output of the procedure EXTEND-SHORTEST-
PATHS(D;W ).

The SLOW-ALL-PAIRS-SHORTEST-PATHS algorithm
starts with D(1) = W and computes D(m) = Wm for
m = 2; :::; n� 1.

Like the \product" operation our \�" operation is
associative, i.e.

A � (B � C) = (A �B) � C

Assume that n � 1 = 2k. A faster method for
computing Dn�1 is:

For t = 1 to k do

D2t = D2t�1 �D2t�1
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Fast All-Pairs Shortest Paths Algorithm

We need to compute D(m) for some m � n� 1.

Let m = 2dlog2(n�1)e

Theorem 4. The FAST-ALL-PAIRS-SHORTEST-
PATHS algorithm computes the correct distances in
�(n3 log n) steps.
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The Floyd-Warshall algorithm

The previous algorithm extends in each iteration
the number of edges used by the paths.

This algorithm extends the set of vertices that can
be used as intermediate vertices on the paths.

For a path P = v1; v2; ::::; vk�1; vk, the edges
v2; ::::; vk�1 are intermediate edges.

Let V = f1; :::; ng.

In iteration k, the algorithms computes all pairs
shortest paths with intermediate vertices in f1; :::; kg.
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In iteration k, the algorithms computes all pairs
shortest paths with intermediate vertices in f1; :::; kg.

Let d
(k)
i;j = the distance of a shortest path from i

to j using only vertices of f1; :::; kg.

Lemma 1.

d
(k)
i;j =

(
wi;j if k = 0

MIN
h
d
(k�1)
i;j ; d

(k�1)
i;k + d

(k�1)
k;j

i
if k � 1

Proof. Let P be a shortest path from i to j using
vertices in f1; :::; kg:

If P does not use k then d
(k)
i;j = d

(k�1)
i;j .

Otherwise P consists of a path P1 from i to k,
followed by a path P2 from k to j.

P1 is a shortest path from i to k in f1; :::; k�1g and
P2 is a shortest path from k to j in f1; :::; k � 1g. 2
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Theorem 5. The run-time of the Floyd-Warshall
algorithm is O(n3) steps.
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Transitive Closure

Given a directed graph G, the transitive closure

of G is a directed graph G� = (V;E�), where

E� = f(i; j) j there is a path from i to j in Gg:

Giving G, we can compute G� by computing all
pairs shortest paths with all edges having weight 1.

More eÆciently:

Let

t
(0)
i;j =

�
0 if i 6= j and (i; j) 62 E
1 if i = j or (i; j) 2 E

For k � 1

t
(k)
i;j = t

(k�1)
i;j _

�
t
(k�1)
i;k ^ t

(k�1)
k;j

�
:
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