Shortest Paths Problems

Input: a directed graph $G=(V, E)$ and a weight function $w: E \rightarrow R$.

The weight of a path $p=v_{0}, v_{1}, v_{2}, \ldots, v_{k}$ is

$$
w(p)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right) .
$$

The weight of the shortest path from u to v, $\delta(u, v)$ is the minimum of $w(p)$ for all p connecting u to v, and ∞ if there is no such path in G.

All-Pairs Shortest Paths

Single-Source Shortest Paths:

Compute shortest paths from a given source to all vertices in the graph.

All-Pairs Shortest Paths:
Given a graph $G=(V, E),|V|=n$, and a weight function w on the edges, compute the shortest paths between all pairs of vertices.

The problem is not well defined in the presence of a negative weight cycle in the graph.

All-Pairs Shortest Path Algorithms

We can solve an all-pairs shortest-paths problem by running a single source shortest-paths algorithm n times, once for each vertex as a source. Then the running time is:

- $O\left(n^{3}\right)$ if we use the Dijkstra algorithm (assuming no negative edge weights);
- $O\left(n^{2}|E|\right)$ if we use Bellman-Ford algorithm - i.e., $O\left(n^{4}\right)$ if the graph is dense.

Instead we will give a direct approach to finding the shortest paths between all pairs of vertices. We assume that negative weights exist, but no negative weight cycle.

First we will give an $O\left(n^{4}\right)$ algorithm, then improve it to $O\left(n^{3} \log n\right)$. Later we will give a even better algorithm running in $O\left(n^{3}\right)$ time.

All Pairs Shortest Paths

Input: an adjacency matrix W where $w_{i, j}$ is the weight of the edge (i, j) :

$$
w_{i, j}= \begin{cases}0 & \text { if } i=j \\ \text { weight of }(i, j) & \text { if } i \neq j \text { and }(i, j) \in E \\ \infty & \text { if }(i, j) \notin E\end{cases}
$$

Output:
A matrix D where $d_{i, j}$ is the shortest path from i to j.

The Basic Idea

Define $d_{i, j}^{(m)}$ to be the shortest path between i and j using paths of up to m edges. When $m=0$, we have

$$
d_{i j}^{(0)}=\left\{\begin{array}{rll}
0 & : & i=j \\
\infty & : & i \neq j
\end{array}\right.
$$

Recursively we define,

$$
d_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left[d_{i, k}^{(m-1)}+w_{k, j}\right] .
$$

If there are no negative weight cycles then no shortest path has more than $n-1$ edges.

How to compute these matrices?

Computing the Matrices

Define a sequence of matrices $D^{(1)}, D^{(2)}, \ldots D^{(n-1)}$, where for $m=1,2, \ldots, n-1$, we have $D^{(m)}=\left(d_{i j}^{(m)}\right)$.

Note that $D^{(1)}=W$.
The key procedure is to compute the matrix $D^{(m)}$ given $D^{(m-1)}$ and W : extending the shortest paths computed so far by one more edge.

Theorem 1. The procedure EXTEND-SHORTEST-$\operatorname{PATHS}\left(D^{(m-1)}, W\right)$ returns the matrix $D^{\prime}=D^{(m)}$.

Theorem 2. For $n \times n$ matrices D and W, the procedure EXTEND-SHORTEST-PATHS $\left(D^{(m-1)}, W\right)$ takes $\Theta\left(n^{3}\right)$ steps.

Slow All-Pairs Algorithm

> Theorem 3. The SLOW-ALL-PAIRS-SHORTESTPATHS algorithm computes the correct shortest paths and terminates in $\Theta\left(n^{4}\right)$ steps.

Shortest Paths and Matrix Multiplication

EXTEND-SHORTEST-PATHS procedure is closely related to MATRIX-MULTIPLY.

Let $C=A \cdot B$ be the product of two $n \times n$ matrices A and B. For $i, j=1,2, \ldots, n$, we compute

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} \cdot b_{k j}
$$

Note that by substituting,

$$
\begin{gathered}
d^{(m-1)} \rightarrow a \\
w \rightarrow b \\
d^{(m)} \rightarrow c \\
\text { min } \rightarrow+ \\
+\rightarrow \cdot
\end{gathered}
$$

in

$$
d_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left[d_{i, k}^{(m-1)}+w_{k, j}\right]
$$

we get matrix multiplication.

Repeated Squaring

Let $D^{\prime}=D \cdot W$, where the operation • is the output of the procedure EXTEND-SHORTEST$\operatorname{PATHS}(D, W)$.

The SLOW-ALL-PAIRS-SHORTEST-PATHS algorithm starts with $D^{(1)}=W$ and computes $D^{(m)}=W^{m}$ for $m=2, \ldots, n-1$.

Like the "product" operation our "." operation is associative, i.e.

$$
A \cdot(B \cdot C)=(A \cdot B) \cdot C
$$

Assume that $n-1=2^{k}$. A faster method for computing D^{n-1} is:

For $t=1$ to k do

$$
D^{2^{t}}=D^{2^{t-1}} \cdot D^{2^{t-1}}
$$

Fast All-Pairs Shortest Paths Algorithm

We need to compute $D^{(m)}$ for some $m \geq n-1$. Let $m=2^{\left\lceil\log _{2}(n-1)\right\rceil}$

Theorem 4. The FAST-ALL-PAIRS-SHORTESTPATHS algorithm computes the correct distances in $\Theta\left(n^{3} \log n\right)$ steps.

The Floyd-Warshall algorithm

The previous algorithm extends in each iteration the number of edges used by the paths.

This algorithm extends the set of vertices that can be used as intermediate vertices on the paths.

For a path $P=v_{1}, v_{2}, \ldots, v_{k-1}, v_{k}$, the edges v_{2}, \ldots, v_{k-1} are intermediate edges.

Let $V=\{1, \ldots, n\}$.
In iteration k, the algorithms computes all pairs shortest paths with intermediate vertices in $\{1, \ldots, k\}$.

In iteration k, the algorithms computes all pairs shortest paths with intermediate vertices in $\{1, \ldots, k\}$.

Let $d_{i, j}^{(k)}=$ the distance of a shortest path from i to j using only vertices of $\{1, \ldots, k\}$.

Lemma 1.

$$
d_{i, j}^{(k)}= \begin{cases}w_{i, j} & \text { if } k=0 \\ M I N\left[d_{i, j}^{(k-1)}, d_{i, k}^{(k-1)}+d_{k, j}^{(k-1)}\right] & \text { if } k \geq 1\end{cases}
$$

Proof. Let P be a shortest path from i to j using vertices in $\{1, \ldots, k\}$.

If P does not use k then $d_{i, j}^{(k)}=d_{i, j}^{(k-1)}$.
Otherwise P consists of a path P_{1} from i to k, followed by a path P_{2} from k to j.
P_{1} is a shortest path from i to k in $\{1, \ldots, k-1\}$ and P_{2} is a shortest path from k to j in $\{1, \ldots, k-1\}$.

Theorem 5. The run-time of the Floyd-Warshall algorithm is $O\left(n^{3}\right)$ steps.

Transitive Closure

Given a directed graph G, the transitive closure of G is a directed graph $G^{*}=\left(V, E^{*}\right)$, where

$$
E^{*}=\{(i, j) \mid \text { there is a path from } i \text { to } j \text { in } G\} .
$$

Giving G, we can compute G^{*} by computing all pairs shortest paths with all edges having weight 1.

More efficiently:
Let

$$
t_{i, j}^{(0)}= \begin{cases}0 & \text { if } i \neq j \text { and }(i, j) \notin E \\ 1 & \text { if } i=j \text { or }(i, j) \in E\end{cases}
$$

For $k \geq 1$

$$
t_{i, j}^{(k)}=t_{i, j}^{(k-1)} \vee\left(t_{i, k}^{(k-1)} \wedge t_{k, j}^{(k-1)}\right)
$$

