Analysis of the Ford-Fulkerson Algorithm

Theorem 1. Assume that all the capacities are integral then the run-time of the Ford-Fulkerson algorithm is $O(|E| \cdot|f|)$ where $|f|$ is the maximum flow value.

Proof.
Steps 1-3 take $O(|E|)$ time.
The while loop is executed $O(|f|)$ times, since each iteration improves the flow by at least 1.

An augmenting path in the residual graph can be found by breadth-first or depth-first search, thus each iteration of the while loop takes $O(|E|)$ time.

The Edmonds-Karp Improvement

Theorem 2. If the augmenting path in the FordFulkerson algorithm is found by a breadth-first search (i.e. the algorithm uses a path of minimum number of edges), the run time of the algorithm is $O\left(V \cdot E^{2}\right)$.

Let $\delta_{f}(s, u)$ be the minimum number of edges on a path from s to u is the residual graph G_{f}.

Lemma 1. Let f_{1}, f_{2}, \ldots be the sequence of flows produced by successive iterations of the Edmonds-Karp algorithm, then for any $u \in V$ the sequence $\delta_{f_{i}}(s, u)$ is non-decreasing in i.

Proof.

Proof by contradiction. Let f^{\prime} be the flow computed by adding the flow of an augmenting path in G_{f}.

$$
B(f)=\left\{u \mid \delta_{f^{\prime}}(s, u)<\delta_{f}(s, u)\right\}
$$

and assume that $B(f)$ is not empty.
Let $v \in B(f)$ such that for all $u \in B(f)$

$$
\delta_{f^{\prime}}(s, v) \leq \delta_{f^{\prime}}(s, u) .
$$

Let p^{\prime} be a shortest path from s to v in $G_{f^{\prime}}$. Let (u, v) be the last edge on that path.

Since $\delta_{f^{\prime}}(s, u)<\delta_{f^{\prime}}(s, v), u \notin B(f)$.
Consider the flow from u to v in f.

$$
\text { If } f(u, v)<c(u, v) \text { then }
$$

$$
\begin{aligned}
\delta_{f}(s, v) & \leq \delta_{f}(s, u)+1 \\
& \leq \delta_{f^{\prime}}(s, u)+1 \\
& =\delta_{f^{\prime}}(s, v)
\end{aligned}
$$

Thus, $v \notin B(f)$, contradiction.

$$
\text { If } f(u, v)=c(u, v) \text { then }(u, v) \notin E_{f}
$$

An augmenting path p in G_{f} that produces $G_{f^{\prime}}$ must have the edge (v, u) so that $(u, v) \in E_{f^{\prime}}$.

Thus, $\delta_{f}(s, u)=\delta_{f}(s, v)+1$.

$$
\begin{aligned}
\delta_{f}(s, v) & =\delta_{f}(s, u)-1 \\
& \leq \delta_{f^{\prime}}(s, u)-1 \\
& =\delta_{f^{\prime}}(s, v)-2 \\
& <\delta_{f^{\prime}}(s, v)
\end{aligned}
$$

Contradicting $v \in B(f)$.

Theorem 3. The total number of flow augmentations executed by the Edmonds-Karp algorithm is $O(V E)$. Proof.

An edge $(u, v) \in E_{f}$ is critical if

$$
c_{f}(p)=c_{f}(u, v) .
$$

There is at least one critical edge in any augmenting path, and that edge does not appear in the next residual network.

Let $(u . v) \in E$, we bound the number of iterations in which (u, v) can be a critical edge.

Since the algorithm uses shortest path, if (u, v) is a critical edge in G_{f},

$$
\delta_{f}(s, v)=\delta_{f}(s, u)+1
$$

(u, v) can appear again in a residual network only after the flow on that edge is decreased, or there was augmentation on of flow on an augmented path that includes the edge (v, u).

Let $G_{f^{\prime}}$ be the residual graph of this augmenting path. On that graph

$$
\begin{aligned}
\delta_{f^{\prime}}(s, u) & =\delta_{f^{\prime}}(s, v)+1 \\
\delta_{f^{\prime}}(s, u) & =\delta_{f^{\prime}}(s, v)+1 \\
& \geq \delta_{f}(s, v)+1 \\
& =\delta_{f}(s, u)+2
\end{aligned}
$$

Thus, every time the edge (u, v) becomes critical its distance to s (in number of edges) is increased by 2.

The distance cannot be more than $V-2$, and there are $2 E$ pairs of vertices that can be connected in the residual graph, thus there can be no more than $O(V \cdot E)$ augmentation iterations.

Corollary 1. The run-time of the Edmonds-Karp algorithm is $O\left(V \cdot E^{2}\right)$.

Bi-partite Matchning Through Maximum Flow

Given a bi-partite graph $G=(A, B, E)$ we can use a maximum flow algorithm to find maximum matching in G.

Define a directed graph $G^{\prime}=\left(V^{\prime} E^{\prime}\right)$:

- $V^{\prime}=A \cup B \cup\{s, t\}$
- Connect s to all vertices in A. Direct all edges in E from A to B. Connect all vertices in B to t.
- All edges have capacity 1 .

A flow is integer value if the flow through each edge is an integer value.

Theorem 4. The Ford-Fulkerson algorithm generates an integer value flow in G^{\prime}.

Proof. By induction on the augmentation steps.
Theorem 5. The cardinality of the maximum matching in G equals the value of the maximum flow in G^{\prime}.

Proof. Since each node in A and B can be adjacent to only one vertex with integer flow >0, a flow f in G^{\prime} corresponds to a matching M in G with $|f|=|M|$.

