Probability and Algorithms

Probabilistic analysis of algorithms - the performance of an algorithm on a randomly generated input.

Randomized algorithms - algorithm that perform random steps.

Probabilistic Space

A discrete probabilistic space is a pair $(\mathcal{S}, \operatorname{Pr})$ such that:

- \mathcal{S} is the set of elementary events.
- $\operatorname{Pr}: \mathcal{S} \rightarrow R^{+}$, such that

$$
\sum_{s \in \mathcal{S}} \operatorname{Pr}(s)=1
$$

An event \mathcal{E} is a union of elementary events.

$$
\operatorname{Pr}(\mathcal{E})=\sum_{s \in \mathcal{E}} \operatorname{Pr}(s) .
$$

Random Variable

Let $(\mathcal{S}, P r)$ be a discrete probability space.
Let V be a set of values.
A random variable X defined on $(\mathcal{S}, \operatorname{Pr})$ is a function

$$
\begin{gathered}
\qquad X: \mathcal{S} \rightarrow V \\
\text { Let } E(r)=\{s \in \mathcal{S} \mid X(s)=r\} \\
\operatorname{Pr}(X=r)=\operatorname{Pr}(E(r))=\sum_{s \in E(r)} \operatorname{Pr}(s) .
\end{gathered}
$$

Expectation

The expectation of a discrete random variable X :

$$
E[X]=\sum_{i \in \operatorname{range}((X)} i \cdot \operatorname{Pr}(X=i) .
$$

Linearity of Expectation

Theorem 1. For any two random variables X and Y

$$
E[X+Y]=E[X]+E[Y] .
$$

Proof.

$$
\sum \quad \sum(i+j) \operatorname{Pr}((X=i) \cap(Y=j))=
$$

$$
E[X+Y]=
$$

$$
\underset{i \in \operatorname{range}(X)}{ }(X \in \operatorname{range}(Y)
$$

$$
\begin{aligned}
& \sum_{i} \sum_{j} i \operatorname{Pr}((X=i) \cap(Y=j))+ \\
& \sum_{j} \sum_{i} j \operatorname{Pr}((X=i) \cap(Y=j))= \\
& \sum_{i} i \operatorname{Pr}(X=i)+\sum_{j} j \operatorname{Pr}(Y=j) .
\end{aligned}
$$

(Since we sum over all possible choices of $i(j)$.)

Examples:

1. The expectation of the sum of two dice is 7 , even if they are not independent.
2. Assume that we flip N coins, what is the expected number of heads?

Using linearity of expectation we get $N \cdot \frac{1}{2}$.
By direct summation we get $\sum_{i=0}^{N} i\binom{N}{i} 2^{-N}$.
Thus we prove

$$
\sum_{i=0}^{N} i\binom{N}{i} 2^{-N}=\frac{N}{2}
$$

3. Assume that N people checked coats in a restaurants. The coats are mixed and each person gets a random coat.

How many people got their own coats?
It's hard to compute $E[X]=\sum_{k=0}^{N} k \operatorname{Pr}(X=k)$. Instead we define N 0-1 random variables X_{i}, where $X_{i}=1$ iff i got his coat.

$$
\begin{gathered}
E\left[X_{i}\right]=1 \cdot \operatorname{Pr}\left(X_{i}=1\right)+0 \cdot \operatorname{Pr}\left(X_{i}=0\right)= \\
\operatorname{Pr}\left(X_{i}=1\right)=\frac{1}{N}
\end{gathered}
$$

$$
E[X]=\sum_{i=1}^{N} E\left[X_{i}\right]=1
$$

Quicksort

Procedure Q_S(S);

Input: A set S.
Output: The set S in sorted order.

1. If $|S| \leq 1$ then return S, else
2.(a) Choose a random element y uniformly from S.
(b) Compare all elements of S to y. Let

$$
S_{1}=\{x \in S-\{y\} \mid x \leq y\}, \quad S_{2}=\{x \in S-\{y\} \mid x>y\}
$$

(c) Return the list:

$$
Q_{-} S\left(S_{1}\right), y, Q_{-} S\left(S_{2}\right) .
$$

Let $T=$ number of comparisons in a run of QuickSort.

Theorem 2.

$$
E[T]=O(n \log n)
$$

Let s_{1}, \ldots, s_{n} be the elements of S is sorted order.
For $i=1, \ldots, n$, and $j>i$, define $0-1$ random variable $X_{i, j}$, s.t.
$X_{i, j}=1$ iff s_{i} is compared to s_{j} in the run of the algorithm.

The number of comparisons in running the algorithm is

$$
T=\sum_{i=1}^{n} \sum_{j>i} X_{i, j} .
$$

We are interested in $E[T]$.

What is the probability that $X_{i, j}=1$?
s_{i} is compared to s_{j} iff either s_{i} or s_{j} is chosen as a "split item" before any of the $j-i-1$ elements between s_{i} and s_{j} are chosen.

Elements are chosen uniformly at random \rightarrow elements in the set $\left[s_{i}, s_{i+1}, \ldots, s_{j}\right]$ are chosen uniformly at random.

$$
\begin{gathered}
\operatorname{Pr}\left(X_{i, j}=1\right)=\frac{2}{j-i+1} . \\
E\left[X_{i, j}\right]=\frac{2}{j-i+1} .
\end{gathered}
$$

$$
\begin{gathered}
E[T]=E\left[\sum_{i=1}^{n} \sum_{j>i} X_{i, j}\right]= \\
\sum_{i=1}^{n} \sum_{j>i} E\left[X_{i, j}\right]=\sum_{i=1}^{n} \sum_{j>i} \frac{2}{j-i+1} \leq \\
n \sum_{k=1}^{n} \frac{1}{k} \leq 2 n H_{n}=n \log n+O(n) .
\end{gathered}
$$

A Deterministic QuickSort

Procedure DQ_S(S);
Input: A set S.
Output: The set S in sorted order.

1. If $|S| \leq 1$ then return S, else
2.(a) Let y be the first element in S.
(b) Compare all elements of S to y. Let
$S_{1}=\{x \in S-\{y\} \mid x \leq y\}, \quad S_{2}=\{x \in S-\{y\} \mid x>y\}$
(Elements is S_{1} and S_{2} are in th same order as in S.)
(c) Return the list: $D Q_{-} S\left(S_{1}\right), y, D Q_{-} S\left(S_{2}\right)$.

Probabilistic Analysis of QuickSort

Theorem 3. The expected run time of $D Q_{-} S$ an a a random input, uniformly chosen from all possible permutation of S is $O(n \log n)$.

Proof.
Set $X_{i, j}$ as before.
If all permutations have equal probability, all permutations of S_{i}, \ldots, S_{j} have equal probability, thus

$$
\begin{gathered}
\operatorname{Pr}\left(X_{i, j}\right)=\frac{2}{j-i+1} . \\
E\left[\sum_{i=1}^{n} \sum_{j>i} X_{i, j}\right]=O(n \log n) .
\end{gathered}
$$

Randomized Algorithms:

- Analysis is true for any input.
- The sample space is the space of random choices made by the algorithm.
- Repeated runs are independent.

Probabilistic Analysis;

- The sample space is the space of all possible inputs.
- If the algorithm is deterministic repeated runs give the same output.

Randomized Algorithm classification

A Monte Carlo Algorithm is a randomized algorithm that may produce an incorrect solution.

For decision problems: A one-side error Monte Carlo algorithm errs only one one possible output, otherwise it is a two-side error algorithm.

A Las Vegas algorithm is a randomized algorithm that always produces the correct output.

In both types of algorithms the run-time is a random variable.

