Median and Order Statistics

Input: An array $A[1 . . n]$ of n distinct elements, an integer $1 \leq i \leq n$.

Output: The i-th largest element in the array A

Random-Select $(S, i) \quad(i \leq|S|)$.

1. If $|S|=1$ then return S.
2. Choose a random element y uniformly from S
3. Compare all elements of S to y. Let

$$
S_{1}=\{x \in S \mid x \leq y\}, \quad S_{2}=\{x \in S \mid x>y\} .
$$

4. If $\left|S_{1}\right|=n$ then
4.1 If $i=n$ return $\{y\}$, else $S_{1}=S_{1}-\{y\}$
5. If $\left|S_{1}\right| \geq i$ then return Random-Select $\left(S_{1}, i\right)$ else return Random-Select $\left(S_{2}, i-\left|S_{1}\right|\right)$;

Correctness

Theorem 1. The algorithm returns a singleton with the correct value.

Proof.

By induction on the depth of the recursion, in each call to Random-Select $\left(S^{\prime}, i^{\prime}\right), i^{\prime} \leq\left|S^{\prime}\right|$ and the i^{\prime} largest element in S^{\prime} is the i largest element in S.

When $\left|S^{\prime}\right|=1$, it includes the i largest element in S. \square

Run-time

Theorem 2. The worst-case run-time of the algorithm is $O\left(n^{2}\right)$.

Proof. In the worst case the size of the set that includes the i-th largest element decreases by one in each iteration.

Expected run-time

Theorem 3. The expected run-time of the algorithm is $O(n)$.

Proof.
Without loss of generality we can assume that in each iteration the i-th largest element is in the larger of the two sets S_{1} and S_{2}.
$T(n)=$ the expected run-time on a set of n elements.

$$
\begin{aligned}
T(n) & \leq \frac{1}{n} \sum_{k=1}^{n-1} T(\operatorname{Max}[k, n-k])+\alpha n \\
& \leq \frac{2}{n} \sum_{k=\lceil n / 2\rceil}^{n-1} T(k)+\alpha n
\end{aligned}
$$

We show that $T(n) \leq c n$ for some constant $c>0$.

$$
\begin{aligned}
T(n) & \leq \frac{2}{n} \sum_{k=\lceil n / 2\rceil}^{n-1} c k+\alpha n \\
& \leq\left(\frac{2 c}{n}\right)\left(\frac{1}{2}\right)\left(\frac{3 n}{2}\right)\left(\frac{n}{2}\right)+\alpha n \\
& \leq \frac{3}{4} c n+\alpha n \\
& \leq c n
\end{aligned}
$$

Linear Time Deterministic Selection Algorithm

Theorem 4. There is a deterministic algorithm that finds the i-th largest element in an unsorted array of n elements in $O(n)$ time.

Select (S, i) - Selects the i-th largest element in the set S.

1. $n=|S|$.
2. Partition S into $\left\lfloor\frac{n}{5}\right\rfloor$ groups of 5 elements each, and a leftover group of up to 4 elements.
3. Find the median of each of the groups, let R be the set of these $\left\lceil\frac{n}{5}\right\rceil$ values.
4. $y=\operatorname{Select}\left(R,\left\lfloor\frac{|R|}{2}\right\rfloor\right)$;
5. Compare all elements of S to y. Let

$$
S_{1}=\{x \in S \mid x \leq y\}, \quad S_{2}=\{x \in S \mid x>y\} .
$$

6. If $\left|S_{1}\right| \geq i$ then return $\operatorname{Select}\left(S_{1}, i\right)$ else return Select $\left(S_{2}, i-\left|S_{1}\right|\right)$;

Correctness

Theorem 5. The algorithms returns the correct value.

Proof. By inductions on the calls to select() in step 6.

Run-time

Theorem 6. The run-time of the algorithm is $O(n)$.

Proof.

How many elements in S are larger than y, the "median of medians" value computed in step 4 of the algorithm?

Excluding the leftover group, and the group that includes y, in at least half of the remaining groups, there are at least three elements that are $>y$. Thus, at least

$$
3\left(\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil-2\right) \geq \frac{3 n}{10}-6
$$

in S are greater than y.
Similarly, at least $\frac{3 n}{10}-6$ elements in S are $\leq y$.
Thus, select is called in step 6 with at most $\frac{7 n}{10}+6$ elements.
$T(n)=$ run-time on sets of size n.

$$
T(n) \leq T\left(\left\lceil\frac{n}{5}\right\rceil\right)+T\left(\frac{7 n}{10}+6\right)+\alpha n
$$

We show that $T(n) \leq c n$ for some constant $c>0$.

$$
\begin{aligned}
T(n) & \leq c(n / 5+1)+c(7 n / 10+6)+\alpha n \\
& \leq 9 c n / 10+7 c+\alpha n \\
& \leq c n
\end{aligned}
$$

for $n>70$ and sufficiently large c.

