
Median and Order Statistics

Input: An array A[1..n] of n distinct elements, an
integer 1 ≤ i ≤ n.

Output: The i-th largest element in the array A

– Typeset by FoilTEX – 1

Random-Select(S, i) (i ≤ |S|).

1. If |S| = 1 then return S.

2. Choose a random element y uniformly from S

3. Compare all elements of S to y. Let

S1 = {x ∈ S | x ≤ y}, S2 = {x ∈ S | x > y}.

4. If |S1| = n then

4.1 If i = n return {y}, else S1 = S1 − {y}

5. If |S1| ≥ i then return Random-Select(S1, i) else
return Random-Select(S2, i− |S1|);

– Typeset by FoilTEX – 2

Correctness

Theorem 1. The algorithm returns a singleton with
the correct value.

Proof.

By induction on the depth of the recursion, in
each call to Random-Select(S′, i′), i′ ≤ |S′| and the i′

largest element in S′ is the i largest element in S.

When |S′| = 1, it includes the i largest element in
S. 2

– Typeset by FoilTEX – 3

Run-time

Theorem 2. The worst-case run-time of the
algorithm is O(n2).

Proof. In the worst case the size of the set that
includes the i-th largest element decreases by one in
each iteration. 2

– Typeset by FoilTEX – 4

Expected run-time

Theorem 3. The expected run-time of the algorithm
is O(n).

Proof.

Without loss of generality we can assume that in
each iteration the i-th largest element is in the larger
of the two sets S1 and S2.

T (n) = the expected run-time on a set of n
elements.

T (n) ≤ 1
n

n−1∑

k=1

T (Max[k, n− k]) + αn

≤ 2
n

n−1∑

k=dn/2e
T (k) + αn

– Typeset by FoilTEX – 5

We show that T (n) ≤ cn for some constant c > 0.

T (n) ≤ 2
n

n−1∑

k=dn/2e
ck + αn

≤ (
2c
n

)(
1
2
)(

3n
2

)(
n

2
) + αn

≤ 3
4
cn + αn

≤ cn

2

– Typeset by FoilTEX – 6

Linear Time Deterministic Selection

Algorithm

Theorem 4. There is a deterministic algorithm that
finds the i-th largest element in an unsorted array of n
elements in O(n) time.

– Typeset by FoilTEX – 7

Select (S, i) - Selects the i-th largest element in
the set S.

1. n = |S|.

2. Partition S into bn
5c groups of 5 elements each, and

a leftover group of up to 4 elements.

3. Find the median of each of the groups, let R be the
set of these dn

5e values.

4. y = Select(R, b|R|
2 c);

5. Compare all elements of S to y. Let

S1 = {x ∈ S | x ≤ y}, S2 = {x ∈ S | x > y}.

6. If |S1| ≥ i then return Select(S1, i) else return
Select(S2, i− |S1|);

– Typeset by FoilTEX – 8

Correctness

Theorem 5. The algorithms returns the correct
value.

Proof. By inductions on the calls to select() in step
6. 2

– Typeset by FoilTEX – 9

Run-time

Theorem 6. The run-time of the algorithm is O(n).

Proof.

How many elements in S are larger than y, the
“median of medians” value computed in step 4 of the
algorithm?

Excluding the leftover group, and the group that
includes y, in at least half of the remaining groups,
there are at least three elements that are > y. Thus,
at least

3(
1
2
dn
5
e − 2) ≥ 3n

10
− 6

in S are greater than y.

Similarly, at least 3n
10 − 6 elements in S are ≤ y.

Thus, select is called in step 6 with at most 7n
10 + 6

elements.

– Typeset by FoilTEX – 10

T (n) = run-time on sets of size n.

T (n) ≤ T (dn
5
e) + T (

7n
10

+ 6) + αn.

We show that T (n) ≤ cn for some constant c > 0.

T (n) ≤ c(n/5 + 1) + c(7n/10 + 6) + αn

≤ 9cn/10 + 7c + αn

≤ cn

for n > 70 and sufficiently large c. 2

– Typeset by FoilTEX – 11

