Hash Tables

Given a set of possible keys U, such that $|U|=u$ and a table of m entries, a Hash function h is a mapping from U to $M=\{1, \ldots, m\}$.

A collision occurs when two hashed elements have $h(x)=h(y)$.

Definition 1. A hash function $h: U \rightarrow M$ is perfect for a set S if it causes no collisions for pairs in S.

For any given S such that $|S| \leq m$ there is a perfect hash function.

For any S such that $|S|>m$ there is no perfect hash function.

If $|U|>m$ there is no perfect hashing function for all $S \subset U$, s.t. $|S|=m$.

Chaining

$h($.$) - hash function.$
A table $T[1 . . n]$ such that $T[k]$ is a pointer to a linked list of all the elements hashed to $T[k]$.

Insert k : add k to the linked list $T[h(k)]$.
Search/delete k : search (+ delete) in $T[h(k)]$.
The cost is proportional to the length of the link lists.

Hash Functions

$$
\begin{aligned}
& h(k)=k \bmod m \\
& h(k)=(a k+b) \bmod m, \\
& H=\{h(k) \mid 1 \leq a \leq m-1,0 \leq b \leq m-1\}
\end{aligned}
$$

If m not a prime, let $p>m$ be a prime

$$
h(k)=((a x+b) \bmod p) \bmod m
$$

Analysis of Hashing with Chaining

Let n be the number of keys stored in the table.
The load factor $\alpha=\frac{n}{m}$.
Worst case insert time either $O(1)$ or $O(n)$.
Worst case search/delete time $O(n)$.
For simple probabilistic analysis:
Simple Uniform Assumption: Keys are hashed to uniformly random and independent locations.

Assume that $h($.$) is computed in O(1)$ time.

Theorem 1. In a hash table in which collisions are resolved by chaining, under the assumption of simple uniform hashing,

1. An unsuccessful search takes $\Theta(1+\alpha)$ expected time.
2. A successful search takes $\Theta(1+\alpha)$ expected time.

Proof.
(1) The expected time of an unsuccessful search is the average length of a list, plus the time to compute $h($.$) which is O(1+\alpha)$.
(2) We assume that the key being searched is equally likely any on the n keys in the tables.

Assume that a key is inserted at the head of the link list.

If the key we are searching was the i-th key to be inserted to the table, The expected number of elements in front of that key in its linked list is $\frac{n-i}{m}$.

The expected search time is

$$
\begin{array}{r}
\frac{1}{n} \sum_{i=1}^{n}\left(1+\frac{n-i}{m}\right) \\
=1+\frac{1}{n m} \sum_{i=1}^{n}(n-i) \\
=1+\frac{1}{n m} \frac{n(n-1)}{2}=1+\frac{\alpha}{2}+\frac{1}{2 m} \tag{3}
\end{array}
$$

Universal Hash Functions

Definition 2. A family H of hash functions from U to M is 2-universal if for all $x, y \in U$, such that $x \neq y$, and for a randomly chosen function h from H

$$
\operatorname{Pr}(h(x)=h(y)) \leq \frac{1}{m} .
$$

Let H be the set of all functions from U to M, then H is 2-universal.

Problem: There are u^{m} functions from U to M requires $m \log u$ bits to choose, represent and store as a table.

Theorem 2. Assuming that we hash n keys to a table of size $m, n \leq m$, using a hash function chosen at random from a 2-universal family of hash functions. The expected number of collisions of a given key is less than 1.

Proof. Let $\delta(x, y, h)=1$ iff $h(x)=h(y)$, else 0 .
By definition for a given pair of keys x and y. $E[\delta(x, y, h)]=1 / m$.

There are $n-1$ other keys in the table thus the expected number of collisions with a given key x is $(n-1) / m$.

Theorem 3. For any sequence of r operations, such that there are never more than s elements in the table, the expected total work is:

$$
r\left(1+\frac{s}{m}\right) .
$$

Proof.

$$
\text { Let } \delta(x, y, h)=1 \text { iff } h(x)=h(y) \text {, else } 0 .
$$

Assume that when we insert (or delete) the element x while the set S is in the table. The time to insert (delete) key x is

$$
1+C(x, S)
$$

where

$$
C(x, S)=\sum_{y \in S} \delta(x, y, h) .
$$

$$
\begin{aligned}
& E[C(x, S)]=\frac{1}{|H|} \sum_{h \in H} \sum_{y \in S} \delta(x, y, h)= \\
& \frac{1}{|H|} \sum_{y \in S} \sum_{h \in H} \delta(x, y, h) \leq \frac{1}{|H|} \sum_{y \in S} \frac{|H|}{m}=\frac{|S|}{m} .
\end{aligned}
$$

\square

Constructing 2-universal hash functions

Let m be a prime number.
Let $\left(x_{0}, \ldots, x_{r}\right)$ be the binary representation of a key x.

Let $\bar{a}=\left(a_{0}, \ldots, a_{r}\right)$.

$$
h_{\bar{a}}(x)=\left(\sum_{i=0}^{r} a_{i} x_{i}\right) \bmod m
$$

Let

$$
H=\left\{h_{\bar{a}}(x) \mid a_{i} \in\{0, \ldots, m-1\}\right\} .
$$

Theorem 4. H is a family of 2-universal hash functions from U to M.

Proof.

Fix x, y such that $x \neq y$.
We need to count the number of functions in H (vectors \bar{a}) for which

$$
h_{\bar{a}}(x)=h_{\bar{a}}(y)
$$

Assume without loss of generality that $x_{0} \neq y_{0}$.
If $h_{\bar{a}}(x)=h_{\bar{a}}(y)$ then

$$
a_{0}\left(x_{0}-y_{0}\right)=\sum_{i=1}^{r} a_{i}\left(y_{i}-x_{i}\right)
$$

Since m is a prime, the arithmetics is in a field, and for each a_{1}, \ldots, a_{r} there is only one value of a_{0} that satisfied this equation.

Thus, there are m^{r} functions in which x and y collide, or the probability is $1 / \mathrm{m}$.

Open Addressing

Keys are stored in the table - no pointers.
The hash function has two arguments;

- the key
- the probe number

$$
h: U \times\{0, \ldots, m-1\} \rightarrow\{0, \ldots, m-1\} .
$$

Insert(T, k)

1. $i \leftarrow 0$
2. Repeat
$2.1 j \leftarrow h(k, i)$
2.2 If $T[j]=N I L$ then
2.2.1. $T[j] \leftarrow k$
2.2.2. RETURN
2.3 else $i \leftarrow i+1$
3. until $i=m$
4. ERROR: TABLE IS FULL.

Search(T,k)

1. $i \leftarrow 0$
2. Repeat
$2.1 j \leftarrow h(k, i)$
2.2 If $T[j]=k$ then RETURN j;
$2.3 i \leftarrow i+1$;
3. until $i=m$ or $T[j]=N I L$;
4. Return NIL.

Open Address Hash Functions

Linear Probing:

$$
h(k, i)=\left(h^{\prime}(k)+i\right) \bmod m
$$

Double Hashing:

$$
h(k, i)=\left(h_{1}(k)+h_{2}(i)\right) \bmod m
$$

Analysis of Open Address Hashing

Assume uniform hashing, for a given key k, the probe sequence $h(k, 0), h(k, 1) \ldots$ is a random permutation on $0, \ldots, m-1$.

Theorem 5. For a open address table with load factor $\alpha=n / m<1$, and assuming uniform hashing, the expected number of probes in an unsuccessful search is at most $\frac{1}{1-\alpha}$.

Lemma 1. Let X be a random variable with values in the Natural numbers $N=\{1,2,3, \ldots\}$, then

$$
E[X]=\sum_{i=1}^{\infty} i \operatorname{Pr}(X=i)=\sum_{i=1}^{\infty} \operatorname{Pr}(X \geq i)
$$

Proof.

$$
\begin{aligned}
E[X] & =\sum_{i=1}^{\infty} i \operatorname{Pr}(X=i) \\
& =\sum_{i=1}^{\infty} i(\operatorname{Pr}(X \geq i)-\operatorname{Pr}(X \geq i+1)) \\
& =\sum_{i=1}^{\infty} \operatorname{Pr}(X \geq i)
\end{aligned}
$$

Proof. Let T be the number of probes in an unsuccessful search.

Let $q_{i}=\operatorname{Pr}(T-1 \geq i)$, the probability that at least i probes accessed an occupied slot.
$q_{1}=\frac{n}{m}$.
$q_{2}=\left(\frac{n}{m}\right)\left(\frac{n-1}{m-1}\right)$.
For $i \leq n$,

$$
\begin{aligned}
q_{i} & =\left(\frac{n}{m}\right)\left(\frac{n-1}{m-1}\right) \cdots \frac{n-i+1}{m-i+1} \\
& \leq\left(\frac{n}{m}\right)^{i} \\
& =\alpha^{i}
\end{aligned}
$$

For $i>n, q_{i}=0$.

$$
E[T]=1+\sum_{i=1}^{n} q_{i} \leq \frac{1}{1-\alpha} .
$$

Theorem 6. The expected number of probes in inserting a new item to a table with load α is $\frac{1}{1-\alpha}$.

Theorem 7. The expected number of probes in a successful search in an open address table with load factor α is

$$
\frac{1}{\alpha} \ln \frac{1}{1-\alpha}+\frac{1}{\alpha}
$$

assuming uniform hashing, and all keys are equally likely to be searched.

Proof.

The expected number of probes in searching for the key that was the $i+1$-th key inserted to the table is

$$
\frac{1}{1-\frac{i}{m}}=\frac{m}{m-i}
$$

Averaging over all keys

$$
\begin{aligned}
\frac{1}{n} \sum_{i=0}^{n-1} \frac{m}{m-i} & \\
& =\frac{m}{n} \sum_{i=0}^{n-1} \frac{1}{m-i} \\
& =\frac{1}{\alpha}\left(H_{m}-H_{m-n}\right) \\
& \left.\leq \frac{1}{\alpha}(\ln m+1-\ln (m-n))\right) \\
& =\frac{1}{\alpha}\left(\ln \frac{m}{m-n}+1\right) \\
& =\frac{1}{\alpha} \ln \frac{1}{1-\alpha}+\frac{1}{\alpha}
\end{aligned}
$$

