Hash Tables

Given a set of possible keys U, such that |U| = uand a table of m entries, a **Hash function** h is a mapping from U to $M = \{1, ..., m\}$.

A collision occurs when two hashed elements have h(x) = h(y).

Definition 1. A hash function $h: U \to M$ is perfect for a set S if it causes no collisions for pairs in S.

For any given S such that $|S| \leq m$ there is a perfect hash function.

For any S such that |S| > m there is \mathbf{no} perfect hash function.

If |U| > m there is no perfect hashing function for all $S \subset U$, s.t. |S| = m.

Chaining

h(.) - hash function.

A table T[1..n] such that T[k] is a pointer to a linked list of all the elements hashed to T[k].

Insert k: add k to the linked list T[h(k)].

Search/delete k: search (+ delete) in T[h(k)].

The cost is proportional to the length of the link lists.

Hash Functions

$$h(k) = k \mod m$$

$$h(k) = (ak + b) \mod m,$$

$$H = \{h(k) \mid 1 \le a \le m - 1, \ 0 \le b \le m - 1\}$$

If m not a prime, let p>m be a prime

$$h(k) = ((ax+b) \mod p) \mod m$$

Analysis of Hashing with Chaining

Let n be the number of keys stored in the table.

The load factor $\alpha = \frac{n}{m}$.

Worst case insert time either O(1) or O(n).

Worst case search/delete time O(n).

For simple probabilistic analysis:

Simple Uniform Assumption: Keys are hashed to uniformly random and independent locations.

Assume that h(.) is computed in O(1) time.

Theorem 1. In a hash table in which collisions are resolved by chaining, under the assumption of simple uniform hashing,

- 1. An unsuccessful search takes $\Theta(1+\alpha)$ expected time.
- 2. A successful search takes $\Theta(1 + \alpha)$ expected time.

Proof.

(1) The expected time of an unsuccessful search is the average length of a list, plus the time to compute h(.) which is $O(1 + \alpha)$.

(2) We assume that the key being searched is equally likely any on the n keys in the tables.

Assume that a key is inserted at the head of the link list.

If the key we are searching was the *i*-th key to be inserted to the table. The expected number of elements in front of that key in its linked list is $\frac{n-i}{m}$.

The expected search time is

$$\frac{1}{n}\sum_{i=1}^{n}\left(1+\frac{n-i}{m}\right)$$
 (1)

$$= 1 + \frac{1}{nm} \sum_{i=1}^{n} (n-i)$$
 (2)

$$= 1 + \frac{1}{nm} \frac{n(n-1)}{2} = 1 + \frac{\alpha}{2} + \frac{1}{2m}$$
(3)

– Typeset by Foil $T_{\!E\!} \! X$ –

Universal Hash Functions

Definition 2. A family H of hash functions from U to M is **2-universal** if for all $x, y \in U$, such that $x \neq y$, and for a randomly chosen function h from H

$$Pr(h(x) = h(y)) \leq \frac{1}{m}.$$

Let H be the set of all functions from U to M, then H is 2-universal.

Problem: There are u^m functions from U to M -requires $m \log u$ bits to choose, represent and store as a table.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Theorem 2. Assuming that we hash n keys to a table of size m, $n \le m$, using a hash function chosen at random from a 2-universal family of hash functions. The expected number of collisions of a given key is less than 1.

Proof. Let $\delta(x, y, h) = 1$ iff h(x) = h(y), else 0.

By definition for a given pair of keys x and y. $E[\delta(x, y, h)] = 1/m$.

There are n-1 other keys in the table thus the expected number of collisions with a given key x is (n-1)/m. \Box

Theorem 3. For any sequence of r operations, such that there are never more than s elements in the table, the expected total work is:

$$r(1+\frac{s}{m}).$$

Proof.

Let
$$\delta(x, y, h) = 1$$
 iff $h(x) = h(y)$, else 0.

Assume that when we insert (or delete) the element x while the set S is in the table. The time to insert (delete) key x is

$$1 + C(x, S)$$

where

$$C(x,S) = \sum_{y \in S} \delta(x,y,h).$$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

$$E[C(x,S)] = \frac{1}{|H|} \sum_{h \in H} \sum_{y \in S} \delta(x,y,h) = \frac{1}{|H|} \sum_{y \in S} \sum_{h \in H} \delta(x,y,h) \le \frac{1}{|H|} \sum_{y \in S} \frac{|H|}{m} = \frac{|S|}{m}.$$

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Constructing 2-universal hash functions

Let m be a prime number.

Let $(x_0, ..., x_r)$ be the binary representation of a key x.

Let $\bar{a} = (a_0, ..., a_r)$.

$$h_{\bar{a}}(x) = (\sum_{i=0}^{r} a_i x_i) \mod m.$$

Let

$$H = \{ h_{\bar{a}}(x) \mid a_i \in \{0, ..., m-1\} \}.$$

Theorem 4. H is a family of 2-universal hash functions from U to M.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Proof.

Fix x, y such that $x \neq y$.

We need to count the number of functions in H (vectors \bar{a}) for which

$$h_{\bar{a}}(x) = h_{\bar{a}}(y)$$

Assume without loss of generality that $x_0 \neq y_0$.

If $h_{\bar{a}}(x) = h_{\bar{a}}(y)$ then

$$a_0(x_0 - y_0) = \sum_{i=1}^r a_i(y_i - x_i)$$

Since m is a prime, the arithmetics is in a field, and for each $a_1, ..., a_r$ there is only one value of a_0 that satisfied this equation.

Thus, there are m^r functions in which x and y collide, or the probability is 1/m. \Box

[–] Typeset by FoilT $_{\!E\!} \! \mathrm{X}$ –

Open Addressing

Keys are stored in the table - no pointers.

The hash function has two arguments;

- the key
- the probe number

$$h: U \times \{0, ..., m-1\} \to \{0, ..., m-1\}.$$

Insert(T,k)

- 1. $i \leftarrow 0$
- 2. Repeat
 - 2.1 $j \leftarrow h(k, i)$ 2.2 If T[j] = NIL then 2.2.1. $T[j] \leftarrow k$ 2.2.2. RETURN 2.3 else $i \leftarrow i + 1$
- 3. until i = m
- 4. ERROR: TABLE IS FULL.

Search(T,k)

- 1. $i \leftarrow 0$
- 2. Repeat

2.1
$$j \leftarrow h(k, i)$$

2.2 If $T[j] = k$ then RETURN j ;
2.3 $i \leftarrow i + 1$;

- 3. until i = m or T[j] = NIL;
- 4. Return NIL.

Open Address Hash Functions

Linear Probing:

$$h(k,i) = (h'(k) + i) \mod m$$

Double Hashing:

$$h(k,i) = (h_1(k) + h_2(i)) \mod m$$

Analysis of Open Address Hashing

Assume uniform hashing, for a given key k, the probe sequence h(k,0), h(k,1)... is a random permutation on 0, ..., m-1.

Theorem 5. For a open address table with load factor $\alpha = n/m < 1$, and assuming uniform hashing, the expected number of probes in an unsuccessful search is at most $\frac{1}{1-\alpha}$.

Lemma 1. Let X be a random variable with values in the Natural numbers $N = \{1, 2, 3, ...\}$, then

$$E[X] = \sum_{i=1}^{\infty} i Pr(X=i) = \sum_{i=1}^{\infty} Pr(X \ge i).$$

Proof.

$$E[X] = \sum_{i=1}^{\infty} iPr(X=i)$$
$$= \sum_{i=1}^{\infty} i(Pr(X \ge i) - Pr(X \ge i+1))$$
$$= \sum_{i=1}^{\infty} Pr(X \ge i)$$

Proof. Let T be the number of probes in an unsuccessful search.

Let $q_i = Pr(T - 1 \ge i)$, the probability that at least *i* probes accessed an occupied slot.

$$q_1 = \frac{n}{m}.$$
$$q_2 = \left(\frac{n}{m}\right)\left(\frac{n-1}{m-1}\right).$$

For $i \leq n$,

$$q_i = (\frac{n}{m})(\frac{n-1}{m-1})\cdots\frac{n-i+1}{m-i+1}$$
$$\leq (\frac{n}{m})^i$$
$$= \alpha^i$$

For i > n, $q_i = 0$.

$$E[T] = 1 + \sum_{i=1}^{n} q_i \le \frac{1}{1 - \alpha}$$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Theorem 6. The expected number of probes in inserting a new item to a table with load α is $\frac{1}{1-\alpha}$.

Theorem 7. The expected number of probes in a successful search in an open address table with load factor α is

$$\frac{1}{\alpha}\ln\frac{1}{1-\alpha} + \frac{1}{\alpha},$$

assuming uniform hashing, and all keys are equally likely to be searched.

Proof.

The expected number of probes in searching for the key that was the i + 1-th key inserted to the table is

$$\frac{1}{1-\frac{i}{m}} = \frac{m}{m-i}$$

Averaging over all keys

$$\frac{1}{n}\sum_{i=0}^{n-1}\frac{m}{m-i}$$

$$= \frac{m}{n}\sum_{i=0}^{n-1}\frac{1}{m-i}$$

$$= \frac{1}{\alpha}(H_m - H_{m-n})$$

$$\leq \frac{1}{\alpha}(\ln m + 1 - \ln(m-n)))$$

$$= \frac{1}{\alpha}(\ln\frac{m}{m-n} + 1)$$

$$= \frac{1}{\alpha}\ln\frac{1}{1-\alpha} + \frac{1}{\alpha}$$