Dynamic Programming

A bottom-up solution technique to optimization problems.

The optimal solution is computed from optimal solutions to sub-problems.

Overlapping subproblems.

Longest Common Subsequence

Given a sequence $X = x_1, x_2, ..., x_m$, another sequence $Z = z_1, ..., z_k$ is a **subsequence** of X if there are indices $i_1 < i_2 < i_3... < i_k$ such that for all j = 1, ..., k, $x_{i_j} = z_j$.

Given two sequences X and Y, a sequence Z is a **common subsequence** of X and Y if it is a subsequence of both X and Y.

The longest common sequence (LCS) problem: Given two sequences X and Y, find the longest common subsequence of both X and Y.

Optimal Substructure

Let $X = x_1, ..., x_k$, the *i*-th **prefix** of X is the sequence $X_i = x_1, ..., x_i$.

Theorem 1. Let $Z = z_1, ..., z_k$ be the LCS of $X = x_1, ..., x_m$ and $Y = y_1, ..., y_n$,

- 1. If $x_m = y_n$ then $z_k = x_m = y_n$ and Z_{k-1} is the LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_m$ then $z_k \neq x_m$ implies that Z is the LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_m$ then $z_k \neq y_n$ implies that Z is the LCS of X and Y_{n-1} .

Let c[i, j] be the length of the LCS of X_i and Y_j .

$$c[i,j] = \begin{pmatrix} 0 & \text{if } i = 0 \text{ or } j = 0\\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y\\ Max(c[i,j-1],c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y \end{pmatrix}$$

A top-down solution can be exponential.

A bottom-up approach takes O(nm) time, since there are only nm "subproblems" and each can be computed in O(1) time if the smallest subproblems have already been computed. **Theorem 2.** The LCS-Length algorithm terminates in O(nm) time and computes the correct LCS value.

Elements of Dynamic Programming

Optimal substructures: A k-stage optimal solution is computed from k-1-stage optimal solutions.

Overlapping substructures: the same k - 1-stage substructure is used in the computation of a number of k-stage substructures.