
Efficient Compression

Given a string of characters c ∈ C, a variable length
codes assigns to each character a code (string of 0’s
and 1’s), different characters have different length
code.

Let d(c) be the length of the code of character c.

Assume that the frequency of character c in the
string is f(c).

The cost of the code is

B(C) =
∑

c∈C

f(c) · d(c).

– Typeset by FoilTEX – 1



Prefix Codes

In a Prefix code no codeword is a prefix of another
code word.

Easy encoding and decoding.

Represented as a binary tree.

In an optimal code each non-leaf node has two
children.

– Typeset by FoilTEX – 2



Huffman Code

A simple greedy algorithm that generates an
optimal prefix code.

Theorem 1. The algorithm Huffman encode n
characters in O(n log n) time.

Proof. The queue is maintained as a heap.

The queue is built in O(n) time

There are n − 1 iterations of the loop, each takes
O(log n) times. 2

– Typeset by FoilTEX – 3



Optimality

Theorem 2. Let x and y be the two characters in C
with the lowest frequencies. There is an optimal prefix
code for C for which the codewords of x and y have
the same length and differ only in the last bit.

Proof. Given a tree T of optimal prefix code of C
we generate a new tree T ′′ by moving x and y to be
siblings with maximum depth.

Let b and c be two characters that are encoded by
two sibling leaves of maximum depth.

Assume f(b) ≤ f(c) and f(x) ≤ f(y), which
implies f(x) < f(b) and f(y) < f(c).

Exchange x and b to generate a tree T ′ and then y
and c to generate tree T ′′.

– Typeset by FoilTEX – 4



B(T )−B(T ′) =
∑

c∈C f(c)dT (c)−∑
c∈C f(c)dT ′(c)

= f(x)dT (x) + f(b)dT (b)− f(x)dT ′(x)− f(b)dT ′(b)

= f(x)dT (x) + f(b)dT (b)− f(x)dT (b)− f(b)dT (x)

= (f(b)− f(x))(dT (b)− dT (x)) ≥ 0

Similar for the move from T ′ to T ′′. 2

– Typeset by FoilTEX – 5



Theorem 3. Let T be a tree representing an optimal
prefix code for C. Consider two characters x and
y that appears as siblings in the tree. Let z be
their parent in the tree. Consider z a character with
frequency f(z) = f(x)+f(y), the tree T ′ = T−{x, y}
represents an optimal prefix code for the alphabet
C ′ = C − {x, y} ∪ {z}.
Proof.

For c ∈ C − {x, y}, dT (c) = dT ′(c).

dT (x) = dT (y) = dT ′(z) + 1

B(T ) = B(T ′) + f(x) + f(y)

If T ′ is not optimal, there is a tree T ′′ such that
B(T ′′) < B(T ′). Replacing z with x and y in T ′′ will
give a code with cost

B(T ′′) + f(x) + f(y) < B(T )

which contradicts the fact that T was optimal. 2

– Typeset by FoilTEX – 6



Theorem 4. The procedure Huffman generates an
optimal prefix code.

Proof. We can always merge the two lowest frequency
characters and continue with the remaining set of
characters. 2

– Typeset by FoilTEX – 7



Information Theory

Assume that the string is generated by a
memoryless source: regardless of the past, the next
character in the string is c with probability f(c).

[Same results hold for ergodic stationary processes]

Theorem 5. The optimal compression ratio of a
memoryless source is give by the entropy of the source

E = −
∑

c∈C

f(c) log f(c).

Theorem 6. The Huffman code is asymptotically
optimal.

– Typeset by FoilTEX – 8



Not a real proof...

Let C = {c1, ..., c`}.
Assume that all probabilities are of the form f(c) =

1
2s.

Note that
∑

c∈C f(c) = 1.

Assume that 1/2r is the smallest f(c), there must
be at least two characters with that probability, the
algorithm pairs all of them to nodes with probability
1/2r−1.

The Huffman algorithm generates a tree such that
the probability of visiting a node of depth i is 1/2i.

If f(c) = 1
2i then d(c) = i.

B(C) =
∑

c∈C

f(c) · d(c) = −
∑

c∈C

f(c) log f(c) = E

– Typeset by FoilTEX – 9


