Efficient Compression

Given a string of characters ¢ € C, a variable length
codes assigns to each character a code (string of Q's
and 1's), different characters have different length
code.

Let d(c) be the length of the code of character c.

Assume that the frequency of character c in the
string is f(c).

The cost of the code is

B(C)= Y f(e)-d(c)

ceC

— Typeset by Foil TEX — 1

Prefix Codes

In a Prefix code no codeword is a prefix of another
code word.

Easy encoding and decoding.
Represented as a binary tree.

In an optimal code each non-leaf node has two
children.

— Typeset by Foil TEX — 2

Huffman Code

A simple greedy algorithm that generates an
optimal prefix code.

Theorem 1. The algorithm Huffman encode n
characters in O(nlogn) time.

Proof. The queue is maintained as a heap.
The queue is built in O(n) time

There are n — 1 iterations of the loop, each takes
O(logn) times. O

— Typeset by Foil TEX — 3

Optimality

Theorem 2. Let x and y be the two characters in C
with the lowest frequencies. There is an optimal prefix
code for C' for which the codewords of x and y have
the same length and differ only in the last bit.

Proof. Given a tree T of optimal prefix code of C
we generate a new tree 17" by moving x and y to be
siblings with maximum depth.

Let b and ¢ be two characters that are encoded by
two sibling leaves of maximum depth.

Assume f(b) < f(c) and f(z) < f(y), which
implies f(z) < f(b) and f(y) < f(c).

Exchange x and b to generate a tree 7" and then y
and ¢ to generate tree T".

— Typeset by Foil TEX — 4

B(T) = B(T") = > _ccc F()dr(c) = 2 cee F(e)dri(c)

(T
f(@)dr(z) 4 f(0)dr(b) — f(z)dr(x) — f(b)d7(b)
f()dr(z) + f(b)dr(b) — f(z)dr(b) — f(b)dr(z)

= (£(b) = f())(dr(b) — dr(x)) > 0

Similar for the move from 77 to T". O

— Typeset by Foil TEX — 5

Theorem 3. Let T be a tree representing an optimal
prefix code for C. Consider two characters x and
y that appears as siblings in the tree. Let z be
their parent in the tree. Consider z a character with

frequency f(z) = f(x)+ f(y), thetree T’ =T —{z,y}
represents an optimal prefix code for the alphabet
C'=C—{x,yt U{z}.

Proof.
For c € C — {a,y}, dr(c) = dpi(c).
dr(x) = dr(y) = dr(z) + 1
B(T)=B(T")+ f(z)+ f(y)

If T" is not optimal, there is a tree T" such that
B(T") < B(T"). Replacing z with and y in T"" will
give a code with cost

B(T") + f(x) + f(y) < B(T)

which contradicts the fact that 1" was optimal. O

— Typeset by Foil TEX — 6

Theorem 4. The procedure Huffman generates an
optimal prefix code.

Proof. We can always merge the two lowest frequency
characters and continue with the remaining set of
characters. O

— Typeset by Foil TEX — 7

Information Theory

Assume that the string is generated by a
memoryless source: regardless of the past, the next
character in the string is ¢ with probability f(c).

[Same results hold for ergodic stationary processes]

Theorem 5. The optimal compression ratio of a
memoryless source is give by the entropy of the source

—> f(e)log f(c

ceC

Theorem 6. The Huffman code is asymptotically
optimal.

— Typeset by Foil TEX — 8

Not a real proof...

Let C = {Cl, ...,Cg}.

Assume that all probabilities are of the form f(c) =
1

25
Note that) .~ f(c) =1

Assume that 1/2" is the smallest f(c), there must
be at least two characters with that probability, the

algorithm pairs all of them to nodes with probability
1/2m 1,

The Huffman algorithm generates a tree such that
the probability of visiting a node of depth i is 1/2°.

If f(c) = % then d(c) =

=) fle)-d(e)=—=>_ f(c)log f(c

ceC ceC

— Typeset by Foil TEX — 9

