Efficient Compression

Given a string of characters $c \in C$, a variable length codes assigns to each character a code (string of 0's and 1's), different characters have different length code.

Let d(c) be the length of the code of character c.

Assume that the frequency of character c in the string is f(c).

The **cost** of the code is

$$B(C) = \sum_{c \in C} f(c) \cdot d(c).$$

Prefix Codes

In a **Prefix code** no codeword is a prefix of another code word.

Easy encoding and decoding.

Represented as a binary tree.

In an optimal code each non-leaf node has two children.

Huffman Code

A simple greedy algorithm that generates an optimal prefix code.

Theorem 1. The algorithm Huffman encode n characters in $O(n \log n)$ time.

Proof. The queue is maintained as a heap.

The queue is built in O(n) time

There are n-1 iterations of the loop, each takes $O(\log n)$ times. \Box

Optimality

Theorem 2. Let x and y be the two characters in C with the lowest frequencies. There is an optimal prefix code for C for which the codewords of x and y have the same length and differ only in the last bit.

Proof. Given a tree T of optimal prefix code of C we generate a new tree T'' by moving x and y to be siblings with maximum depth.

Let b and c be two characters that are encoded by two sibling leaves of maximum depth.

Assume $f(b) \leq f(c)$ and $f(x) \leq f(y)$, which implies f(x) < f(b) and f(y) < f(c).

Exchange x and b to generate a tree T^\prime and then y and c to generate tree $T^{\prime\prime}.$

$$B(T) - B(T') = \sum_{c \in C} f(c)d_T(c) - \sum_{c \in C} f(c)d_{T'}(c)$$

= $f(x)d_T(x) + f(b)d_T(b) - f(x)d_{T'}(x) - f(b)d_{T'}(b)$
= $f(x)d_T(x) + f(b)d_T(b) - f(x)d_T(b) - f(b)d_T(x)$
= $(f(b) - f(x))(d_T(b) - d_T(x)) \ge 0$

Similar for the move from T' to T''. \Box

Theorem 3. Let T be a tree representing an optimal prefix code for C. Consider two characters x and y that appears as siblings in the tree. Let z be their parent in the tree. Consider z a character with frequency f(z) = f(x) + f(y), the tree $T' = T - \{x, y\}$ represents an optimal prefix code for the alphabet $C' = C - \{x, y\} \cup \{z\}$.

Proof.

For
$$c \in C - \{x, y\}$$
, $d_T(c) = d_{T'}(c)$.
 $d_T(x) = d_T(y) = d_{T'}(z) + 1$
 $B(T) = B(T') + f(x) + f(y)$

If T' is not optimal, there is a tree T'' such that B(T'') < B(T'). Replacing z with x and y in T'' will give a code with cost

$$B(T'') + f(x) + f(y) < B(T)$$

which contradicts the fact that T was optimal. \Box

[–] Typeset by FoilT $_{\!E\!} \! \mathrm{X}$ –

Theorem 4. The procedure Huffman generates an optimal prefix code.

Proof. We can always merge the two lowest frequency characters and continue with the remaining set of characters. \Box

Information Theory

Assume that the string is generated by a **memoryless source**: regardless of the past, the next character in the string is c with probability f(c).

[Same results hold for ergodic stationary processes]

Theorem 5. The optimal compression ratio of a memoryless source is give by the entropy of the source

$$E = -\sum_{c \in C} f(c) \log f(c).$$

Theorem 6. The Huffman code is asymptotically optimal.

Not a real proof...

Let $C = \{c_1, ..., c_\ell\}.$

Assume that all probabilities are of the form $f(c) = \frac{1}{2^s}$.

Note that $\sum_{c \in C} f(c) = 1$.

Assume that $1/2^r$ is the smallest f(c), there must be at least two characters with that probability, the algorithm pairs all of them to nodes with probability $1/2^{r-1}$.

The Huffman algorithm generates a tree such that the probability of visiting a node of depth i is $1/2^{i}$.

If $f(c) = \frac{1}{2^i}$ then d(c) = i.

$$B(C) = \sum_{c \in C} f(c) \cdot d(c) = -\sum_{c \in C} f(c) \log f(c) = E$$

– Typeset by Foil $T_{\!E\!}\!\mathrm{X}$ –