
Amortized Analysis

The time required to perform a sequence of (data
structure) operations is averaged over all the operations
performed.

No probabilistic assumptions - not an average case
analysis!

1



Stack Operations

Push(S, x) - Push x to the stack S.

Pop(S, x) - Pop the top of stack S.

Multipop(S, k)

1. While not empty and k 6= 0 do

1.1 Pop(S);
1.2 k ← k − 1;

A call to Multipop(S, k) takes O(k) time.

A “naive” analysis of a sequence of of n operations
Push, Pop, and Multipop on an empty stack give
O(n2), since the worst case time of one stack operation
is O(n).

2



Binary Counter

k bit binary counter A[0, ..., k − 1].

k = length[A]

x =
∑k−1

i=0 A[i]2i

Increment(A):

1. i← 0;

2. While i < length[A] and A[i] = 1 do

2.1 A[i]← 0
2.2 i← i + 1

3. If i < length[A] then A[i]← 1.

What’s the cost of n increments?

A worst case increment takes O(k) steps, thus
O(nk) time.

3



Amortized Analysis - The Aggregate

Method

Compute T (n), the total work in n operations and
take T (n)/n.

Stack Operations: The total amount of work
is O(number of Push operations), thus T (n) = O(n),
and amortized work is O(1).

Counter increments: In n increments the i-th bit
(i = 0, 1, ..., k− 1) is flipped only every 2i increments.
Thus

T (n) =
log n∑
i=0

bn
2i
c ≤ n

∞∑
i=0

1
2i

= 2n

Thus, the amortized work is T (n)/n = O(1).

4



Amortized Analysis - The Accounting

Method

We associate a charge with each operation with
the invariant that at any step the total charges in the
new accounting is not smaller than the total real cost
up to that point.

Stack Operations:

Real cost: Push - 1; Pop - 1; Multipop(k, S) -
min(k, s).

New charge: Push - 2; Pop - 0; Multipop(k, S) - 0.

Since the number of Pops is bounded by the number
of Push operations, the total new charge at any given
time is never smaller than the real cost.

A simple O(n) bound on the total amortized cost.

5



Counter increments:

New charge: 2 for each flip to 1, 0 otherwise.

Since we start with all bits set to 0, this give an
upper bound on the real cost.

In each increment operation only one bit is flipped
to 1 - O(1) amortized cost.

6



Amortized Analysis - The Potential

Method

Let D0 be the initial data structure.

Consider a set of n operations: ci the cost of
operation i, Di the data structure after operation i.

The potential function:

Φ : {Di | i = 0, ..., n} → R

The amortized cost of operation i is

A(ci) = ci + Φ(Di)− Φ(Di−1)

7



The total amortized cost:

n∑
i=1

A(ci) =
n∑

i=1

(ci + Φ(Di)− Φ(Di−1))

=
n∑

i=1

ci + Φ(Dn)− Φ(D0)

If we can show that Φ(Di) ≥ Φ(D0) for all i, then

n∑
i=1

A(ci) ≥
n∑

i=1

ci

8



Stack Operations

Define Φ(Di) = number of items in the stack.

Φ(Di) ≥ Φ(D0) = 0.

The amortized cost of a push operation (starting
with s items in the stack) is:

A(ci) = 1 + (s + 1)− s = 2

The amortized cost of a Multipop(S, k) (k′ =
min(k, s))

A(ci) = k′ + (s− k′)− s = 0

Thus, all operations have amortized cost O(1), the
total cost of n operations is O(n).

9



Counter Increment

Let Φ(Di) = number of 1’s in the counter.

If counter starts with 0: Φ(Di) ≥ Φ(D0) = 0.

Assume that the i-th operation (increment) flipped
ti bits to 0.

The total cost of that operation is ti + 1.

A(ci) = ci+Φ(Di)−Φ(Di−1) = ti+1+1−ti = 2.

The total amortized cost of n operations is O(n).

10



If the counter didn’t start with 0:

n∑
i=1

A(ci) =
n∑

i=1

(ci + Φ(Di)− Φ(Di−1))

=
n∑

i=1

ci + Φ(Dn)− Φ(D0)

or

n∑
i=1

ci =
n∑

i=1

A(ci) + Φ(D0)− Φ(Dn)

≤
n∑

i=1

A(ci) + k

11



Dynamic Tables

Allocate storage to a table dynamicly. When the
allocated space is full, it is expanded by allocating
more space, when large part of the space is empty the
space allocated to the table shrinks.

Table-Insert - add one item to the table.

Table-Delete - delete a given item from the table.

We analyze a heuristics that uses space allocations
in powers of 2.

size[T ] = current size of the table.

num[T ] = number of items currently in the table.

Initially size[T ] = num[T ] = 0.

The cost of expanding/contraction of the table
equal the number of elements in the table at the time
of the operation.

12



Potential Function Analysis for

Expansion Only

Double the size of the table when inserting to a full
table.

The cost of expanding the table equal the number
of elements in the table at the time of expansion.

Φ(T ) = 2 · num[T ]− size[T ]

Φ(T ) = 0 initially, and right after expansions.

Since at least half of the table is always full Φ(T ) ≥
0.

13



Let muni, sizei and Φi be the values after the i-th
operation:

If the i-th step doesn’t trigger an expansion;

A(ci) = ci + Φi − Φi−1

= 1 + (2numi − sizei)− (2numi−1 − sizei−1)

= 1 + (2numi − sizei)− (2(numi − 1)− sizei−1)

= 3

14



If the i-th step triggers an expansion;

A(ci) = ci + Φi − Φi−1

= numi + (2numi − sizei)− (2numi−1 − sizei−1)

= numi + (2numi − 2(numi − 1))

−(2(numi − 1)− (numi − 1))

= 3

Thus the amortized work per step is O(1).

15



Potential Function Analysis for

Expansion and Contraction

Let α(T ) = num[T ]
size[T ] .

Double the size of the table when inserting to
a full table (α[T ] = 1), halve the table size when
α[T ] < 1/4.

Φ(T ) =
{

2num[T ]− size[T ] if α(T ) ≥ 1/2
size[T ]/2− num[T ] if α(T ) < 1/2

Φ(T ) ≥ 0.

Let αi be the value of α[T ] after operation i.

16



Table-Insert

If αi−1 ≥ 1/2 then as before A(ci) = 3.

If αi−1 < 1/2 AND αi < 1/2

A(ci) = ci + Φi − Φi−1

= 1 + (sizei/2− numi)− (sizei−1/2− numi−1)

= 1 + (sizei/2− numi)− (sizei/2− (numi − 1))

= 0

17



If αi−1 < 1/2 AND αi ≥ 1/2

A(ci) =

= ci + Φi − Φi−1

= 1 + (2numi − sizei)− (sizei−1/2− numi−1)

= 1 + (2(numi−1 + 1)− sizei−1)

−(sizei−1/2− numi−1)

= 3numi−1 − 3
2
sizei−1 + 3

= 3αi−1sizei−1 − 3
2
sizei−1 + 3

< 3

Thus, amortized cost of Table-Insert is O(1).

18



Table-Delete

numi = numi−1 − 1, and if αi−1 < 1/2 there
might be a contraction.

If there is no contraction:

A(ci) = ci + Φi − Φi−1

= 1 + (sizei/2− numi)− (sizei−1/2− numi−1)

= 1 + (sizei/2− numi)− (sizei/2− (numi + 1))

= 2

19



If there is a contraction, ci = numi + 1, and
sizei/2 = sizei−1/4 = numi + 1.

A(ci) = ci + Φi − Φi−1

= (numi + 1) + (sizei/2− numi)

−(sizei−1/2− numi−1)

= (numi + 1) + ((numi + 1)− numi)

−((2numi + 2)− (numi + 1))

= 1

If αi > 1/2 no contraction.

In all cases A(ci) = O(1).

20



Data Structures for Disjoint Sets

Maintain a Dynamic collection of disjoint sets.

Each set has a unique representative (an arbitrary
member of the set).

Make-Set(x) - Create a new set with one member
x.

Union(x, y) - Combine the two sets, represented
by x and y into one set.

Find-Set(x) - Find the representative of the set
containing x.

21



Computing Connected Components

Given a graph G = (V, E) compute the connected
components of G.

Algorithm Connected-Components(G);

for each vertex v ∈ V do
Make-Set(v);
for each edge (u, v) ∈ E do
If Find-Set(u) 6= Find-Set(v) then Union(u, v);

22



Linked-List Representation

Each set is represented as a linked list. The head
of the list is the representative element.

Each item in the list has a pointer to the next
element in the list and to the head of the list.

Make-List and Find-List take O(1) steps.

Union is implemented by appending one list to the
other. The pointers of all the appended elements need
to be updated.

m Union operation can take O(m2) time.

O(m) amortized cost.

23



Weighted Union

A representative stores the size of its list.

In Union(x, y) we always append the smaller set to
the larger one.

Theorem 1. Any m operations on a collection of sets
with a total of up to n elements takes O(m + n log n)
operations.

Proof.

We bound the number of times a pointer of an
element is updated.

When a pointer is updated the element at least
doubles the size of its set.

No more than log n updates per element. 2

24


