Polynomials

$$
A(x)=\sum_{i=0}^{n-1} a_{i} x^{i}
$$

n - the degree of the polynomial.
a_{0}, \ldots, a_{n-1} - the coefficients of the polynomial.

Coefficient representation:

The polynomial $A(x)=\sum_{i=0}^{n-1} a_{i} x^{i}$ is represented by the vector $a=\left(a_{0}, a_{1}, \ldots ., a_{n-1}\right)$.

The value $A\left(x_{0}\right)$ can be computed in $O(n)$ time by

$$
A\left(x_{0}\right)=a_{0}+x_{0}\left(a_{1}+x_{0}\left(a_{2}+\ldots+x_{0}\left(a_{n-2}+x_{0} x_{n-1}\right) \ldots\right)\right)
$$

Summation

Given two polynomials $A(x)=\sum_{i=0}^{n-1} a_{i} x^{i}$ and $B(x)=\sum_{i=0}^{n-1} b_{i} x^{i}$

$$
C(x)=A(x)+B(x)=\sum_{i=0}^{n-1}\left(a_{i}+b_{i}\right) x^{i}
$$

The degree of $C(x)$ is the max degree of $A(x)$ and $B(x)$.

The sum of two degree n polynomials, given in a coefficient representation, is computed $O(n)$ time

Product

Given two polynomials $A(x)=\sum_{i=0}^{n-1} a_{i} x^{i}$ and $B(x)=\sum_{i=0}^{n-1} b_{i} x^{i}$

$$
D(x)=A(x) B(x)=\sum_{i=0}^{2(n-1)} d_{i} x^{i}
$$

where

$$
d_{i}=\sum_{k=0}^{i} a_{k} b_{i-k}
$$

The degree of $D(x)$ is the sum of the degrees of $A(x)$ and $B(x)$.

The product of two degree n polynomials, given in a coefficient representation, is computed $O\left(n^{2}\right)$ time.

Point value representation

A set of n pairs

$$
\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}
$$

such that

- for all $i \neq j, x_{i} \neq x_{j}$.
- for every $k, y_{k}=A\left(x_{k}\right)$;

Theorem 1. For any set ofn point value pairs (x_{i}, y_{i}) there is a unique degree n polynomial $A(x)$ such that $A\left(x_{i}\right)=y_{i}$ for all pairs.

Proof. We need to solve

$$
\left(\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{n-1} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
\cdot & \cdot & \cdot & \ldots & \cdot \\
1 & x_{n-1} & x_{n-1}^{2} & \ldots & x_{n-1}^{n-1}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\cdot \\
a_{n-1}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
\cdot \\
y_{n-1}
\end{array}\right)
$$

The determinant of the Vandermonde matrix is

$$
\Pi_{j<k}\left(x_{k}-x_{j}\right)
$$

If all the X_{i} 's are distinct, the matrix is nonsingular and the linear system has a unique solution. \square

Given two polynomials in (same) point value representation $\left\{\left(x_{0}, y_{0}^{1}\right),\left(x_{1}, y_{1}^{1}\right), \ldots,\left(x_{n}, y_{n}^{1}\right)\right\} \quad$ and $\left\{\left(x_{0}, y_{0}^{2}\right),\left(x_{1}, y_{1}^{2}\right), \ldots,\left(x_{n}, y_{n}^{2}\right)\right\}$

The sum of two degree n polynomials in point value representation is computed in $O(n)$ time:

$$
\left\{\left(x_{0}, y_{0}^{1}+y_{0}^{2}\right),\left(x_{1}, y_{1}^{1}+y_{1}^{2}\right), \ldots,\left(x_{n-1}, y_{n-1}^{1}+Y_{n-1}^{2}\right)\right\}
$$

To compute the product of two degree n polynomials we need an "extended" point value representation of $2 n$ points.

Given such a representation, the product of two polynomials in point value representation is computed in $O(n)$.

$$
\left\{\left(x_{0}, y_{0}^{1} y_{0}^{2}\right),\left(x_{1}, y_{1}^{1} y_{1}^{2}\right), \ldots,\left(x_{2 n-2}, y_{2 n-1}^{1} y_{2 n-1}^{2}\right)\right\}
$$

Fast Polynomial Multiplication

To compute the product of two degree n polynomials in coefficient representation:

1. Evaluate the polynomials is $2 n$ points to create an extended $2 n$ point value representation of the polynomials.
2. Compute the product of the two polynomials in $O(n)$ time.
3. Convert the point value representation of the product to coefficient representation.

Using the FFT method (1) and (3) can be done in $O(n \log n)$ time.

Complex roots of unity

A complex number w is the n-th root of unity if

$$
w^{n}=1
$$

There are n complex n-th roots of unity given by

$$
e^{2 \pi i k / n} \quad \text { for } k=0, \ldots n-1
$$

were $e^{i u}=\cos (u)+i \sin (u)$ and $i=\sqrt{-1}$.
The principal n-th root of unity is

$$
w_{n}=e^{2 \pi i / n}
$$

the other roots are powers of w_{n}.

Operations on the roots of unity

For any j and k :

$$
w_{n}^{k} w_{n}^{j}=w_{n}^{j+k}
$$

Since $w_{n}^{n}=1$

$$
w_{n}^{k} w_{n}^{j}=w_{n}^{j+k}=w_{n}^{(j+k) \bmod n}
$$

and

$$
w_{n}^{-k}=w_{n}^{n-k}
$$

DFT

The Discrete Fourier Transform (DFT) of a coefficient vector $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ is a vector $y=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)$ such that

$$
y_{k}=A\left(w_{n}^{k}\right)=\sum_{j=0}^{n-1} a_{j} w_{n}^{k j} .
$$

$y=D F T_{n}(a)$.
Using Fast Fourier Transform (FFT) we can compute $D F T_{n}(a)$ in $O(n \log n)$ steps, instead of $O\left(n^{2}\right)$.

FFT

Assume that n is a power of 2 (otherwise complete to the nearest power of 2).

Given the polynomial $A(x)=\sum_{j=0}^{n-1} a_{j} x^{j}$ we define two polynomials

$$
\begin{aligned}
& A^{[0]}(x)=a_{0}+a_{2} x+a_{4} x^{2}+\ldots+a_{n-2} x^{n / 2-1} \\
& A^{[1]}(x)=a_{1}+a_{3} x+a_{5} x^{2}+\ldots+a_{n-1} x^{n / 2-1}
\end{aligned}
$$

Then

$$
A(x)=A^{[0]}\left(x^{2}\right)+x A^{[1]}\left(x^{2}\right)
$$

To compute $\operatorname{DFT}_{n}(a)$ we need to compute the polynomials $A^{[0]}(y)$ and $A^{[1]}(y)$ in the n points

$$
\left(w_{n}^{0}\right)^{2},\left(w_{n}^{1}\right)^{2}, \ldots,\left(w_{n}^{n-1}\right)^{2}
$$

Theorem 2. The set $\left(w_{n}^{0}\right)^{2},\left(w_{n}^{1}\right)^{2}, \ldots,\left(w_{n}^{n-1}\right)^{2}$ contains only $n / 2$ distinct points.

Proof. We'll show that the squares of n complex n-th roots of unity are the $n / 2$ complex $n / 2$-th roots of unity. Assume that $k \leq \frac{n}{2}$.

$$
\left(w_{n}^{k}\right)^{2}=\left(e^{2 \pi i k / n}\right)^{2}=e^{(2 \pi i k) /(n / 2)}=w_{n / 2}^{k}
$$

$$
\begin{aligned}
\left(w_{n}^{k+n / 2}\right)^{2} & =\left(e^{2 \pi i(k+n / 2) / n}\right)^{2} \\
& =e^{2 \pi i n / n} e^{(2 \pi i k) /(n / 2)} \\
& =\left(w_{n}^{1}\right)^{n} w_{n / 2}^{k} \\
& =w_{n / 2}^{k}
\end{aligned}
$$

Computing the $D F T_{n}(a)$ is reduced to:

1. Computing two $D F T_{n / 2}$
2. combining the results:

Given $y_{k}^{[0]}=A^{[0]}\left(w_{n / 2}^{k}\right)=A^{[0]}\left(\left(w_{n}^{k}\right)^{2}\right)$ and $y_{k}^{[1]}=$ $A^{[1]}\left(w_{n / 2}^{k}\right)=A^{[1]}\left(\left(w_{n}^{k}\right)^{2}\right)$, for $k \leq n / 2$

$$
\begin{aligned}
y_{k} & =y_{k}^{[0]}+w_{n}^{k} y_{k}^{[1]} \\
y_{k+n / 2} & =y_{k}^{[0]}-w_{n}^{k} y_{k}^{[1]} \\
& =y_{k}^{[0]}+w_{n}^{k+n / 2} y_{k}^{[1]}
\end{aligned}
$$

Since $w_{n}^{k+n / 2}=-w_{n}^{n / 2} w_{n}^{k}=-1 w_{n}^{k}$

Complexity

$$
T(n)=2 T(n / 2)+O(n)=O(n \log n)
$$

Theorem 3. A point value representation of an n degree polynomial given in a coefficient representation can be generated in $O(n \log n)$ time.

Given the DFT $y=\left(y_{0}, \ldots, y_{n-1}\right)$ of a degree n polynomial we want to generate the coefficient representation $a=\left(a_{0}, \ldots, a_{n-1}\right)$ of the polynomial.

We need to solve
$\left(\begin{array}{ccccc}1 & 1 & 1 & \cdot & 1 \\ 1 & w_{n} & w_{n}^{2} & \cdot & w_{n}^{n-1} \\ 1 & w_{n}^{2} & w_{n}^{4} & \cdot & w_{n}^{2(n-1)} \\ 1 & w_{n}^{3} & w_{n}^{6} & \cdot & w_{n}^{3(n-1)} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ 1 & w_{n}^{n-1} & w_{n}^{2(n-1)} & \cdot & w_{n}^{(n-1)(n-1)}\end{array}\right)\left(\begin{array}{c}a_{0} \\ a_{1} \\ \cdot \\ a_{n-1}\end{array}\right)=\left(\begin{array}{c} \\ y \\ y\end{array}\right.$
or $y=V_{n} a$.

Theorem 4. The (i, j) entry in V_{n}^{-1} is $\frac{w_{n}^{-i j}}{n}$.
Proof. We show that $V_{n}^{-1} V_{n}=I_{n}$:
The $\left(j, j^{\prime}\right)$ entry of $V_{n}^{-1} V_{n}$

$$
\begin{aligned}
{\left[V_{n}^{-1} V_{n}\right]_{j, j^{\prime}} } & =\sum_{k=0}^{n-1} \frac{w_{n}^{-k j}}{n}\left(w_{n}^{k j^{\prime}}\right) \\
& =\frac{1}{n} \sum_{k=0}^{n-1} w_{n}^{-k\left(j-j^{\prime}\right)}
\end{aligned}
$$

If $j=j^{\prime}$ the summation is 1 .

If $j \neq j^{\prime}$

$$
\begin{aligned}
\sum_{k=0}^{n-1} w^{-k\left(j-j^{\prime}\right)} & =\sum_{k=0}^{n-1}\left(w^{j-j^{\prime}}\right)^{k} \\
& =\frac{\left(w_{j}^{j-j^{\prime}}\right)^{n}-1}{w^{j-j^{\prime}}-1} \\
& =\frac{\left(w_{n}^{n} j^{j-j}-j^{\prime}-1\right.}{w_{j}^{j-j^{\prime}}-1} \\
& =\frac{(1)^{j-j^{\prime}}-1}{w_{j}^{j-j^{\prime}}-1} \\
& =0
\end{aligned}
$$

Thus, we need to compute

$$
a_{i}=\frac{1}{n} \sum_{k=0}^{n-1} y_{k} w_{n}^{-k i}
$$

which can be computed by the FFT algorithm in $O(n \log n)$.

Theorem 5. Given a point value representation of an n degree polynomial in n-th roots of unity, the coefficient representation of that polynomial can be computed in $O(n \log n)$ time.

Theorem 6. The product of two n degree polynomials can be computed in $O(n \log n)$ time.

