Cryptosystem

Traditional Cryptosystems:

- The two parties agree on a **secret** (one to one) function *f*.
- To send a message M, the sender sends the message f(M).
- The receiver computes $f^{-1}(f(M))$.

Advantage: Cannot be broken if the function f is used only once (or very few times).

Disadvantage: The two parties need a **secure** channel to agree on secrete keys.

Public Key Cryptossystem

Bob needs to send a secrete message to Alice:

- Alice generates two functions $P_A()$ and $S_A()$, such that
 - 1. For any legal message M, $S_A(P_A(M)) = M$.
 - 2. $S_A()$ and $P_A()$ are easy to compute.
 - 3. It is computationally hard to compute $P_A^{-1}()$.
- Alice publishes the function $P_A()$.
- Bob sends Alice the message $P_A(M)$.
- Alice computes $M = S_A(P_A(M))$.

To decrypt the message without the function $S_A()$ one needs to compute $P_A^{-1}()$.

Digital Signatures

Bob needs to verify (and be able to prove) that Alice sent him a message M:

- Alice generates two functions $P_A()$ and $S_A()$, such that
 - 1. For any legal message M, $P_A(S_A(M)) = M$.
 - 2. $S_A()$ and $P_A()$ are easy to compute.
 - 3. It is computationally hard to compute $P_A^{-1}()$.
- Alice publishes the function $P_A()$.
- Alice sends the message $(M, S_A(M))$ to Bob.
- Bob verifies that $P_A(S_A(M)) = M$

To forge Alice's signature one needs to compute $P_A^{-1}()$.

Challenge

How to generate a pair of functions $(S_A(), P_A())$ such that for any M:

- $S_A(P_A(M)) = M$ and $P_A(S_A(M)) = M$ and it is easy to compute.
- Without the function $S_A()$, the function $P_A()$ is hard to "invert" ("one-way function").

Almost all cryptosystems today use public-key. We'll study one such method: RSA.

The RSA Cryptosystem

- 1. Select at random two LARGE prime numbers p and q (100-200 decimal digits).
- 2. Compute n = pq.
- 3. Select a small odd integer e relatively prime to $\phi(n) = (p-1)(q-1)$.
- 4. Compute d such that $ed = 1 \mod \phi(n)$ (d exists and is unique!!!).
- 5. Publish the **public key** function $P_A(M) = M^e \mod n$ (the pair (e, n)).
- 6. Keep secret the secrete key function $S_A(C) = C^d \mod n$.

Theorem 1. The RSA system is correct, i.e.

•
$$S_A(P_A(M)) = M;$$

•
$$P_A(S_A(M)) = M$$

Divisibility

Integer a divides integer b iff $\frac{b}{a}$ is an integer.

The greatest common divisor of a and b,

d = gcd(a, b)

is the largest integer that divides both a and b.

Integers a and b are **relatively prime** if

gcd(a,b) = 1

Integer p is a prime number if for any a < p, gcd(p,a) = 1.

Theorem 2. If d = gcd(a, b) then there are integers x and y such that

$$d = ax + by$$

Proof. Let s be the smallest positive integer such that s = ax + by for some integers x and y.

Let $q = \lfloor \frac{a}{s} \rfloor$.

$$a \mod s = a - qs$$
$$= a - q(ax + by)$$
$$= a(1 - qx) + b(-qy)$$

Thus $a \mod s$ is also a linear combination of a and b.

Since

 $a \mod s < s$

and s is the smallest linear combination of a and b, $a \mod s = 0$, and $s \dim a$.

Similarly s divides b, and $gcd(a, b) \ge s$.

But gcd(a, b) divides s, thus s = gcd(a, b). \Box

Theorem 3. If e and $m = \phi(n)$ are relatively prime the equation

$$ed = 1 \mod m$$

has a unique solution for d.

Proof. Since gcd(e,m) = 1 there are integers x and y such that

$$ex + my = 1$$

or

$$ex - 1 = 0 \mod m$$

Fermat's Theorem

Theorem 4. For any integer a and prime p

 $a^{p-1} \mod p = 1$

The Chinese Reminder Theorem

Corollary 1. If $n_1, n_2, ..., n_k$ are pairwise relatively prime and $n = n_1 n_2 \cdot n_k$, then for all integer a and b,

 $a = b \mod n_i$

for all i = 1, ..., k iff

 $a = b \mod n$

Theorem 5. Let gcd(p,q) = 1 and assume that $M^{ed} = M \mod p$, and $M^{ed} = M \mod q$. Let n = pq then

$$M^{ed} = M \mod n$$

Proof. There are integers k_1 and k_2 such that

$$M^{ed} = M + k_1 p$$
, and $M^{ed} = M + k_2 q$.

Thus, $k_1p = k_2q$. If $k_1 = k_2 = 0$, then $M^{ed} = M = M \mod n$ Else, since gcd(p,q) = 1, q divides k_1 and $M^{ed} = M + k_3(pq) = M \mod n$.

1	2
T	.5

Theorem 6. The RSA system is correct, i.e. $S_A(P_A(M)) = M$ and $P_A(S_A(M)) = M$. **Proof.**

$$P_A(S_A(M)) = S_A(P_A(M)) = M^{ed} \mod n.$$

We need to show that $M^{ed} \mod n = M$.

Since $ed = 1 \mod \phi(n)$, for some integer ked = 1 + k(p-1)(q-1).

If $M = 0 \mod p$ then $M^{ed} = M \mod p$,

If $M \neq 0 \mod p$ then

$$M^{ed} = M^{1+k(p-1)(q-1)} \mod p$$
$$= M(M^{p-1})^{k(q-1)} \mod p$$
$$= M \mod p$$

Similarly $M^{ed} = M \mod q$.

We have

$$M^{ed} = M \mod p$$
$$M^{ed} = M \mod q$$

n = pq, thus by the Chinese reminder theorem for all M:

$$M^{ed} = M \mod n$$

Complexity

Theorem 7. Encrypting and decrypting using the RSA method takes $O(\log n)$ multiplication steps.

Security

If an adversary can factor n it can "guess" $S_A()$.

Conjecture: Factoring a large number is "hard".

Conjecture: If factoring is hard breaking RSA is hard.