## Cryptosystem

## Traditional Cryptosystems:

- The two parties agree on a secret (one to one) function $f$.
- To send a message $M$, the sender sends the message $f(M)$.
- The receiver computes $f^{-1}(f(M))$.

Advantage: Cannot be broken if the function $f$ is used only once (or very few times).

Disadvantage: The two parties need a secure channel to agree on secrete keys.

## Public Key Cryptossystem

## Bob needs to send a secrete message to Alice:

- Alice generates two functions $P_{A}()$ and $S_{A}()$, such that

1. For any legal message $M, S_{A}\left(P_{A}(M)\right)=M$.
2. $S_{A}()$ and $P_{A}()$ are easy to compute.
3. It is computationally hard to compute $P_{A}^{-1}()$.

- Alice publishes the function $P_{A}()$.
- Bob sends Alice the message $P_{A}(M)$.
- Alice computes $M=S_{A}\left(P_{A}(M)\right)$.

To decrypt the message without the function $S_{A}()$ one needs to compute $P_{A}^{-1}()$.

## Digital Signatures

Bob needs to verify (and be able to prove) that Alice sent him a message $M$ :

- Alice generates two functions $P_{A}()$ and $S_{A}()$, such that

1. For any legal message $M, P_{A}\left(S_{A}(M)\right)=M$.
2. $S_{A}()$ and $P_{A}()$ are easy to compute.
3. It is computationally hard to compute $P_{A}^{-1}()$.

- Alice publishes the function $P_{A}()$.
- Alice sends the message $\left(M, S_{A}(M)\right)$ to Bob.
- Bob verifies that $P_{A}\left(S_{A}(M)\right)=M$

To forge Alice's signature one needs to compute $P_{A}^{-1}()$.

## Challenge

How to generate a pair of functions $\left(S_{A}(), P_{A}()\right)$ such that for any $M$ :

- $S_{A}\left(P_{A}(M)\right)=M$ and $P_{A}\left(S_{A}(M)\right)=M$ and it is easy to compute.
- Without the function $S_{A}()$, the function $P_{A}()$ is hard to "invert" ("one-way function").

Almost all cryptosystems today use public-key.
We'll study one such method: RSA.

## The RSA Cryptosystem

1. Select at random two LARGE prime numbers $p$ and $q$ (100-200 decimal digits).
2. Compute $n=p q$.
3. Select a small odd integer $e$ relatively prime to $\phi(n)=(p-1)(q-1)$.
4. Compute $d$ such that $e d=1 \bmod \phi(n)$ ( $d$ exists and is unique!!!).
5. Publish the public key function $P_{A}(M)=$ $M^{e} \bmod n$ (the pair $(e, n)$ ).
6. Keep secret the secrete key function $S_{A}(C)=$ $C^{d} \bmod n$.

## Theorem 1. The RSA system is correct, i.e.

- $S_{A}\left(P_{A}(M)\right)=M$;
- $P_{A}\left(S_{A}(M)\right)=M$


## Divisibility

Integer $a$ divides integer $b$ iff $\frac{b}{a}$ is an integer.
The greatest common divisor of $a$ and $b$,

$$
d=\operatorname{gcd}(a, b)
$$

is the largest integer that divides both $a$ and $b$.
Integers $a$ and $b$ are relatively prime if

$$
\operatorname{gcd}(a, b)=1
$$

Integer $p$ is a prime number if for any $a<p$, $\operatorname{gcd}(p, a)=1$.

Theorem 2. If $d=\operatorname{gcd}(a, b)$ then there are integers $x$ and $y$ such that

$$
d=a x+b y
$$

Proof. Let $s$ be the smallest positive integer such that $s=a x+b y$ for some integers $x$ and $y$.

Let $q=\left\lfloor\frac{a}{s}\right\rfloor$.

$$
\begin{aligned}
a \bmod s & =a-q s \\
& =a-q(a x+b y) \\
& =a(1-q x)+b(-q y)
\end{aligned}
$$

Thus $a \bmod s$ is also a linear combination of $a$ and $b$.

Since

$$
a \bmod s<s
$$

and $s$ is the smallest linear combination of $a$ and $b$, $a \bmod s=0$, and $s$ divides $a$.

Similarly $s$ divides $b$, and $\operatorname{gcd}(a, b) \geq s$.
But $\operatorname{gcd}(a, b)$ divides $s$, thus $s=\operatorname{gcd}(a, b)$.

Theorem 3. If $e$ and $m=\phi(n)$ are relatively prime the equation

$$
e d=1 \bmod m
$$

has a unique solution for $d$.
Proof. Since $\operatorname{gcd}(e, m)=1$ there are integers $x$ and $y$ such that

$$
e x+m y=1
$$

or

$$
e x-1=0 \bmod m
$$

## Fermat's Theorem

## Theorem 4. For any integer $a$ and prime $p$

$$
a^{p-1} \bmod p=1
$$

## The Chinese Reminder Theorem

Corollary 1. If $n_{1}, n_{2}, \ldots, n_{k}$ are pairwise relatively prime and $n=n_{1} n_{2} \cdot n_{k}$, then for all integer $a$ and $b$,

$$
a=b \bmod n_{i}
$$

for all $i=1, \ldots, k$ iff

$$
a=b \bmod n
$$

Theorem 5. Let $\operatorname{gcd}(p, q)=1$ and assume that

$$
M^{e d}=M \bmod p, \quad \text { and } \quad M^{e d}=M \bmod q .
$$

Let $n=p q$ then

$$
M^{e d}=M \bmod n
$$

Proof. There are integers $k_{1}$ and $k_{2}$ such that

$$
M^{e d}=M+k_{1} p, \quad \text { and } \quad M^{e d}=M+k_{2} q .
$$

Thus, $k_{1} p=k_{2} q$.
If $k_{1}=k_{2}=0$, then $M^{e d}=M=M \bmod n$
Else, since $\operatorname{gcd}(p, q)=1, q$ divides $k_{1}$ and

$$
M^{e d}=M+k_{3}(p q)=M \bmod n .
$$

Theorem 6. The RSA system is correct, i.e. $S_{A}\left(P_{A}(M)\right)=M$ and $P_{A}\left(S_{A}(M)\right)=M$.

## Proof.

$$
P_{A}\left(S_{A}(M)\right)=S_{A}\left(P_{A}(M)\right)=M^{e d} \bmod n
$$

We need to show that $M^{e d} \bmod n=M$.
Since $e d=1 \bmod \phi(n)$, for some integer $k$ $e d=1+k(p-1)(q-1)$.

If $M=0 \bmod p$ then $M^{e d}=M \bmod p$,
If $M \neq 0 \bmod p$ then

$$
\begin{aligned}
M^{e d} & =M^{1+k(p-1)(q-1)} \bmod p \\
& =M\left(M^{p-1}\right)^{k(q-1)} \bmod p \\
& =M \bmod p
\end{aligned}
$$

Similarly $M^{e d}=M \bmod q$.
We have

$$
\begin{aligned}
& M^{e d}=M \bmod p \\
& M^{e d}=M \bmod q
\end{aligned}
$$

$n=p q$, thus by the Chinese reminder theorem for all $M$ :

$$
M^{e d}=M \bmod n
$$

## Complexity

Theorem 7. Encrypting and decrypting using the RSA method takes $O(\log n)$ multiplication steps.

## Security

If an adversary can factor $n$ it can "guess" $S_{A}()$.
Conjecture: Factoring a large number is "hard".
Conjecture: If factoring is hard breaking RSA is hard.

