Approximate Algorithms

If we cannot find an optimal solution to
an optimization problem, we might be able to
approximate it.

Definition 1. An approximate algorithm has a ratio
bound p(n), if for any input of size n, the optimal

solution C*(n) and the algorithm solution C(n) satisfy
the relation:

MAX | Galoy Gy) <)

Vertex Cover

Given a graph G = (V, E), a vertex cover of G is
a set of vertices V/ C V such that each edge in E is
adjacent to at least one vertex in V.

The vertex cover optimization problem is to find
a vertex cover of minimum size.

The problem is N"P-complete.

Approximation Algorithm

Approximate-Vertex-Cover(G)

1. C 1
2. B — F

3. While E' # () do

3.1 Choose an arbitrary edge (u,v) in £’
3.2 C «— {u,v}
3.3 remove from E’ every edge adjacent to u or v

4. return C

Analysis

Theorem 1. The algorithm returns a vertex cover,
and has a ratio bound of 2.

Proof.

C' is a vertex cover since the algorithm terminates
when E’ = ().

Let A be the set of edges chosen in line 3.1.

No two edges in A have a common vertex, thus
any optimal vertex cover C'* satisfied

7] > [A]

but |C| = 2|A]| thus,

Traveling Salesman Problem

Given a complete graph G = (V, E) with costs
c(u,v) on the edges, find a Hamiltonian cycle of
minimum cost.

We approximate this problem in the case where the
cost function c() satisfied the triangular inequality:
for all u,v and w,

c(u,w) < c(u,v) + c(v,w).

Approximate-TSP(G,c)

1. Compute a minimum spanning tree 1" of (.

2. Compute an Euler cycle of T’ starting at an arbitrary
vertex a.

3. Compute the TSP by starting at vertex a, following
the Euler path, skipping vertices that were already
visited.

Analysis

Theorem 2. The algorithm returns an Hamiltonian
path of GG, with approximate ratio bound of 2 on the
total cost.

Proof. Let H be the path computed by the algorithm,
H™ an optimal path.

For a set of edges X, let ¢(X) = > __ c(e).

Since removing an edge from H* gives a spanning
tree

c(T) < c(H™).

Let 1V be the Euler tour on T', it visits every edge
twice, thus

c(W) =2¢(T) < 2c(HY).

If W is not an Hamiltonian cycle, we remove
vertices from W to get an Hamiltonian cycle.

Assume that W includes the segment ...vuw...

and u already appears on the path.

We remove u and connect v directly to w, but
C(Ua w) < C(’U, ’LL) + C(ua ’LU)

so we don't increase the path cost.

Thus,

Theorem 3. The TSP problem with a cost function
that satisfies the triangular inequality is NP-complete.

Limits on Approximation

Theorem 4. [f P #+ NP then there is no polynomial
time approximation algorithm for the general TSP
problem for any p > 1.

Proof.

Assume that we have such an approximation
algorithm, we'll use it to solve the Hamiltonian
problem.

Given a graph G = (V, E), let G’ be a complete
graph with cost function

e(u,v) = 1 if (u,v) e E
1 p|lV|+1 otherwise

10

If G has an Hamiltonian cycle, then G’ has a TSP
of cost |V| (that cycle).

Any TSP solution in GG’ that is not an Hamiltonian
cycle in G has cost at least

plVI+1+|V|—=1> p|V].

Assume that we run an approximation algorithm
AP with ratio bound p on G:

If G has an Hamiltonian path, AP will return that
path.

If G does not have an Hamiltonian path, AP will
return a TSP with cost more than p|V]|.

Thus, AP solves the Hamiltonian path problem in
G. O

11

Fully Polynomial-Time Approximation

The error bound of an approximation scheme is ¢

¢ -
C*

iff

< e€

A problem has a fully polynomial-time
approximation scheme if for any ¢ > 0 there is an
algorithm for the problem with an € ratio bound that
is polynomial in both the problem size n and 1/e.

12

The Subset-Sum Problem

The subset-sum decision problem: Given a set
S =A{x1,...,x,} of positive integers and an integer t,
is there a subset of S that sums to t.

The subset-sum decision problem in N"P-complete.

The subset-sum optimization problem: Given a set
S ={x1,...,x,} of positive integers and an integer t,
find a subset of S with the largest sum less than ¢.

13

Exponential Algorithm

1. For: =0 ton do

1.1 Compute all the sums bounded by ¢ from subsets
of up to ¢ elements of S.

Each iteration is polynomial in the number of sums
in the previous iteration.

This algorithm is exponential since the number of
different sums can grow exponentially in n.

14

Approximation Algorithm

1. For: =0 ton do

1.1 Compute all the sums bounded by ¢ from subsets
of up to ¢ elements of S.

1.2 Remove sums that are within (1 — €/n) factor of
other sums.

15

Run-Time

Let L; be the collection of sums after the :-th
Iteration.

If 2,2/ € L;, then 2/ > z(1 — %), and all the
elements are smaller than ¢.

Thus, there could be no more than k elements
where

€
tH1l —) <1
(1--)
of log ¢ log ¢
L og . nlog

- —log(1 —€¢/n) = €

Thus, the run-time is polynomial in n and 1/e.

16

How good is the approximation?

Let y be the optimal solution and z the approximate
one.

Since we only removed elements from the list z < y.

Since whenever we removed an elements there was
another elements in the list that was within 1 — ¢/n of
the removed element

1 — 2\ < 2.
y(n) <z

Thus,

(1—ey<z<y

17

