
ASSIGNMENT1 COURSE: CPS234

Due Date: October 6, 2005

Problem 1: (i) Let P = 〈p0, . . . , pn−1〉 andQ = 〈q0, . . . , qn−1〉 be two nonintersecting convex
polygons inR2. Show that the common tangent, both inner and outer, can be computed inO(log n)
time. You can assume that the sequence of vertices ofP (andQ) is stored in an array.

(ii) Let P andQ be two (possibly intersecting) convex polygons withn vertices each. Describe
anO(log n) time algorithm for computing the minimum distance betweenP andQ. If P andQ

intersect, then the minimum distance between them is zero.

Problem 2: (i) Given a collectionR of “red” nonintersecting line segments and another collection
B of “blue” nonintersecting segments inR2, show that all red-blue intersections (intersections be-
tween a red segment and a blue segment) can be counted in timeO(n log2 n), wheren = |R|+ |B|.
What is the space complexity of your algorithm? Improve the space complexity toO(n).
(Hint: Use a segment tree onx-projections of segments and, at each nodev, count intersections
among the segments stored atv. You need to store some additional information at each node of the
segment tree. Make sure that each intersection is counted exactly once.)

Extra credit: Improve the time complexity toO(n log n).

Problem 3: Let S be a set ofn points in the plane. A pointp ∈ S is calledmaximalif there is no
point q 6= p ∈ S such thatx(p) ≤ x(q) andy(p) ≤ y(q). Describe anO(n log h) time algorithm to
compute the maximal points ofS, whereh is the output size.

Extra credit: Describe anO(n log h) time algorithm to compute the maxima of a set ofn points in
R3; h is again the output size.

Problem 4: Let P be a set ofn points inR3. We define a mapN : S2 → P , whereN(u) =
arg maxp∈P 〈p, u〉. N induces a subdivisionP ∗ of S2. What are the vertices, edges, and faces of
P ∗, and how fast canP ∗ be computed?

We call a pair of verticesp, q ∈ P antipodal if there are two parallel planeshp, hq passing
throughp andq, respectively, so thatP lies between them. Describe anO((n + k) log n)-time
algorithm to compute the set of antipodal pairs, wherek is the number of such pairs.

FALL 2005 COMPUTATIONAL GEOMETRY PAGE 1

