Due Date: October 27, 2005

Problem 1: Let R be a set of n rectangles in the plane. Describe an algorithm that reports all k pairs of intersecting rectangles in time $O(n \log n + k)$ time.

(**Hint:** *Use a sweep-line algorithm and maintain a segment tree.*)

Solution by Mason Matthews. Since queries on a segment tree take $O(\lg_2 n)$ time, I will not use the segment tree as described in the notes. Instead, I will sweep a vertical line from left to right (in order of increasing x coordinate) and maintain a binary tree that stores the horizontal edges of the rectangles.

First, sort the vertical edges of the rectangles by x-coordinate. This takes $O(n \lg n)$ time. Next, consider them in increasing order. If a left vertical edge corresponding to rectangle r_i is reached, add r_i s horizontal (top and bottom) edges to the binary tree. Then use the vertical edge as a query on the tree. Output a pairing with any rectangle r_j if one of r_j s horizontal edges intersect the vertical query edge.

When the right edge of a rectangle is reached, remove its horizontal edges from the tree and repeat the query. Each query takes $O(\lg n + k_i)$ time, where k_i is the number of rectangles that intersect with the *i*th vertical edge. Since there are 2n total queries, the line sweep takes $O(n \lg n + k)$ time. Therefore, the total running time of this algorithm is $O(n \lg n + k)$.

Problem 2: Show that the space requirement of the 2-dimensional orthogonal range searching can be improved to O(n), provided we allow query time to be $O(n^{\epsilon})$, for any arbitrarily small constant $\epsilon > 0$. Of course, the constant of proportionality depends on ϵ . What is the preprocessing time? (**Hint:** Store the secondary structures only at certain levels of the primary tree.)

Solution. Create the the range tree as usual but do not construct secondary trees $T_{\rm assoc}(v)$ at every node of the primary tree \mathcal{T} . We create secondary trees for nodes at only a contanst number of levels. Create secondary trees for nodes at every 1/d delta levels of \mathcal{T} where $\delta>0$ is a constant.

The primary tree requires O(n) storage and we create secondary trees at a constant number of levels with secondary trees on the same level requiring O(n) storage in total. The total storage requirement is therefore O(n). The preprocessing time remains the same at $O(n \lg n)$.

There are two steps in a query. First, search for the x-coordinate interval of the range query in the primary tree \mathcal{T} . This takes $O(\lg n)$ time returning $O(\lg n)$ nodes of \mathcal{T} . For each node v returned, we perform a query on the y-coordinate of the range query in the secondary structure $T_{\mathrm{assoc}}(v)$ at v. However, v may not contain a secondary structure so we must descend down the subtree $S_v \subseteq \mathcal{T}$ rooted at v until we find a level of S_v with secondary trees. For each node v, we have to descend at most $\delta \lg n$ levels. Once we have found the level containing secondary trees, we

COURSE: CPS234

have to perform a query on each of the nodes at this level. There are $2^{\delta \lg n} = n^{\delta}$ nodes at this level each with a secondary tree of size $O(n/n^{\delta}) = O(n^{1-\delta})$. A query at every node in this level takes time $O(n^{\delta} \lg n^{1-\delta} + k_v)$ where k_v is the number of points returned. We do this $\lg n$ times for each node v returned by the first step. The total query time is

$$O(n^{\delta} \lg n \lg n^{1-\delta} + k) = O(n^{\delta} \lg n \lg n + k)$$

= $O(n^{\delta} + k)$ for sufficiently large n
= $O(n^{\epsilon})$

Problem 3: A circular disk of radius r centered at point $c \in \mathbb{R}^2$ is the set $D = \{x \mid ||x - c|| \le r\}$. Let $\mathcal{D} = \{D_1, \ldots, D_n\}$ be a set of n circular disks in the plane. Let U be the union of the disks in \mathcal{D} . Show that U has O(n) vertices. Describe an algorithm for computing U.

(**Hint:** Show that each D_i can be mapped to a halfspace H_i in \mathbb{R}^3 so that each point in U maps to $\bigcap_i H_i$.)

Solution by Mason Matthews. If we assume that the center of a disk is given by the pair (μ_x, μ_y) and its radius by r, then the formula for the disk is $(x - \mu_x)^2 + (y - \mu_y)^2 \le r^2$. To represent this as a halfspace in \mathbb{R}^3 , we need to linearize the equation. If we define $z = x^2 + y^2$ and perform some simple algebra, we have:

$$(x - \mu_x)^2 + (y - \mu_y)^2 \le r^2$$

$$x^2 - 2x\mu_x + \mu_x^2 + y^2 - 2y\mu_y + \mu_y^2 \le r^2$$

$$z \le 2x\mu_x + 2y\mu_y - \mu_x^2 - \mu_y^2 + r^2$$

where r, μ_x , and μ_y are constants. If this is the *i*th disk, then the inequality above defines H_i .

Consider $\cap_i H_i^C$, the intersection of the complements of all these halfspaces. This will be a convex polyhedron C which is unbounded above. Since a vertex in U is the intersection of two disk boundaries (say of disks j and k), it is represented in \mathbb{R}^3 by the intersection of two hyperplanes. Let us call this intersection of the two hyperplanes line l_{ij} . However, recall that our points must lie on the paraboloid $z = x^2 + y^2$ This paraboloid can intersect with a given l_{ij} once, twice, or never (implying at most 2 intersections between a pair of circles). Since there are only O(n) edges on a convex polyhedron in \mathbb{R}^3 , there are O(n) intersections between circles, and therefore O(n) vertices in U. It is also worth noting that the edges in U correspond to the intersection of the paraboloid with the faces of C.

An algorithm for computing this union follows from these concepts. First, compute each of the H_i^C halfspaces and find their intersection. This is equivalent to computing the convex hull, which takes $O(n \lg n)$ time in \mathbb{R}^3 . Next, for each edge in the convex hull, check for intersections with the parabola $z = x^2 + y^2$. For each intersection, use the equation for the corresponding hyperplane to

map it back into \mathbb{R}^2 . This will provide the vertices of U, and this can be done in O(n) total time. Edges can be computed in U in $O(n \lg n)$ time as well. For each vertex in U (point on an edge in C), consider the two faces in C surrounding it. For each face, the other edge intersecting the parabola can be found in $O(\lg n)$ time. Following these pairs can yield the cycles in the union.

The total running time of this algorithm is $O(n \lg n)$.

Problem 4: The *farthest neighbor Voronoi diagram* of a set S of points in \mathbb{R}^d , denoted by $\operatorname{Vor}_f(S)$, is the decomposition of \mathbb{R}^d into maximal connected regions so that the farthest point of S from any point within each region (under the Euclidean metric) is the same.

(i) Show that $Vor_f(S)$ in the plane is a tree.

Solution by Mason Matthews. Suppose that there exists a bounded region r in $Vor_f(S)$. There exists a point $s_i \in S$ such that all points in r are farther from s_i than any other points in S. Choose any point in r and follow the line that moves directly away from s_i . Since r is bounded, following this line will lead to a different region. This implies that another point s_j is now farther away than s_i . However, since we increased our distance from s_i at the fastest possible rate, the distance from s_j could never have overtaken it. Therefore, our assumption is false, and there are no bounded regions in $Vor_f(S)$. Since all regions are unbounded, there are no cycles in the graph of $Vor_f(S)$. Therefore, $Vor_f(S)$ is a tree.

(ii) What is the complexity of $Vor_f(S)$ in \mathbb{R}^d ?

Solution. Given n points S in \mathbb{R}^d , linearize each point $s=(s_1,\ldots,s_d)\in S$ to a hyperplane e(s) in \mathbb{R}^d . The hyperplane e(s) is described as follows.

$$x_{d+1} = 2s_1x_1 + 2s_2x_2 + \dots + 2s_dx_d - s_1^2 - s_2^2 - \dots - s_d^2$$

Let E(s) denote the halfspace above e(s). The farthest neighbor Voronoi diagram is the vertical projection of $\bigcap_{s\in S} E(s)$ onto the hyperplane $x_{d+1}=0$. By the Upper Bound Theorem, the complexity of $\operatorname{Vor}_f(S)$ is $O(n^{\lceil n/2 \rceil})$.

COURSE: CPS234