15-852 Randomized Algorithms
Notes for 1/20/97

* useful probabilistic inequalities
* Randomized complexity classes

Useful probabilistic inequalities

Say we have a random variable X. Often want to bound the probability that X is too
far away from its expectation. [In first class, we went in other direction, saying that with
reasonable probability, a random walk on n steps reached at least \/n distance away from
its expectation]

Here are some useful inequalities for showing this:

Markov’s inequality: Let X be a non-negative r.v. Then for any positive k:
Pr[X > kE[X]] < 1/k.
(No need for k to be integer.) Equivalently, we can write this as:

Pr[X > 1] < E[X]/t.

Proof. E[X] =Pr[X > 1] -t +Pr[X <1]-0>¢-Pr[X >1].

Defn of Variance: var[X]= E[(X — E[X])?]. Standard deviation is square root of vari-
ance. Can multiply out variance definition to get:

var[X] = E[X? — 2XE[X] + E[X]’] = E[X?] — (E[X])*.

Chebyshev’s inequality: Let X be a r.v. with mean p and standard deviation o. Then

for any positive ¢, have:
Pr(|X — pu| > to] < 1/t

Proof. Equivalently asking what is the probability that (X — u)* > ¢*var[X]. Now,
just think of I.h.s. as a new non-negative random variable Y. What is its expectation?
So, just apply Markov’s inequality.

Let’s suppose that our random variable X = X; + ...+ X,, where the X; are simpler things
that we can understand. Suppose there is not necessarily any independence. Then we can
still compute the expectation

E[X] =E[X,]+... + E[X,]

and use Markov. (i.e., expectation is same as if they were independent)

1

Suppose we have pairwise independence. Then, var[X] is same as if the X; were fully
independent. In fact, var[X] = ¥, var[X;].
Proof.

E[¥] - (B[X]) = Y. ELX.X,] - Y BIXJE[X]]
= Y EX7 =Y EX)

where the last inequality holds because E[XY] = E[X]E[Y] for independent random vari-
ables, and all pairs here are independent except when 1 = j. So, can apply Chebyshev
easily.

Chernoff and Hoeffding bounds

What if the X;’s are fully independent? Let’s say X is the result of a fair, n-step {—1,+1}
random walk (i.e., Pr[X; = —1] = Pr[X; = +1] = 1/2 and the X, are mutually independent.)
In this case, var[X;] = 1 so var[X]| = n and o(X) = y/n. So, Chebyshev says:

Pr[|X| > tv/n] < 1/t

But, in fact, because we have full independence, we can use the stronger Chernoff and
Hoeffding bounds that in this case tell us:

Pr[X > t/n] < e /2

The book contains some forms of these bounds. Here are some forms of them that I have
found to be especially convenient.

Let Xi,..., X, beasequence of m independent {0, 1} random variables with Pr[.X; = 1]
not necessarlly the same. Let S be the sum of the r.v., and y = E[S]. Then, for 0 < ¢
the following inequalities hold:

I/\ ||

o Pr[S > (1 +6)u] <e P13,
o Pr[S < (1 —8)u] < e ¥r2,
Additive bounds:

o Pr[S — > dn] < e,

o Pr[S — < —dn] < e 2,

Here is a somewhat intuitive proof, for the case of a fair random walk. The book has some
less intuitive but shorter proofs too.

Theorem 1 Let X = Xq+...4+X, with Pr[X; = 1] = Pr[X; = —1] = 1/2, and X; mutually
independent. Then
Pr[X > A\/n] < /2

for A > 0.

Proof. Let’s look at a multiplicative version of the random walk. Let’s say that we start at
1, and on a heads we multiply our current position by (1 + ¢) and on a tails we divide our
current position by (1 + €). So, we can write the random variable Y for this walk as:

Y=Y, Y, Y,

where Pr[Y; = (1 + ¢)] = Pr[Y; = 1/(1 + €¢)] = 1/2 and the Y; are independent. What does
the distribution on Y look like? Just like in the standard additive random walk, the median
of the distribution is our starting point (i.e., there is a 50/50 chance we will end up below 1
and a 50/50 chance we will end up above 1). But, the expectation is much larger, since only
a few additional steps to the right can move us large distances. Formally, doing a simple
calculation gives us:
EY]]=1+¢"/(24+2¢) <1462
and therefore (using the fact that the Y; are independent):
E[Y] < (1+¢/2)".
Let’s now think about what Markov’s inequality applied to Y, i.e.,
Pr[Y > k-E[Y]] < 1/k

tells us about our original (additive) version of the random walk. What happens is we lose
something (compared to applying Markov to X directly) in that E[Y] is pretty far to the
right — we think it is “expected” for X to be as large as log,, (E[Y]) — but we gain
something critical: if X is just, say, 20/¢ steps larger than this value, then that corresponds
to Y being a huge (1 + ¢)?%/¢ a2 % times larger than its expectation, which by Markov has
probability only 1/e%*. Formally,

PriX > log,,.(k-E[Y])] < 1/k
Pr[X > logy,.(k) + logi, (1 +€2/2)")] < 1/k
Pr[X > log, (k) +ne/2] < 1/k

(where a bit of calculation gets you from the second-to-last to the last line). If we now set
E=(1+ 6)”5/2 ~ 6”52/2, we get:!

Pr[X > ne] < e/
and setting € = A/\/n gives us:
Pr[X > \/n| < ¢/

as desired. N

! Actually, I believe this approximation is slightly off in the wrong direction. So, to do this formally we
need to have been more careful with our approximations above...

3

Randomized complexity classes

Let A denote a poly time algorithm that takes two inputs: a (regular) input x and an
“auxiliary” input y where y has length [(|x|) where [is a polynomial and is poly-time
computable. Think of y as the random bits.

e RP: One-sided error. Language [(decision problem) is in RP if there exists a poly
time A:

For all z € L, Pr,[A(z,y) =1] > 1/2.
Forall z ¢ L, Pr,[A(x,y) = 1] = 0.

(x € L means x is something the algorithm is supposed to output 1 on.)

For instance, there are algorithms for primality that have the following property: If
the number is prime, then they output “PRIME”. If it is composite, then they output
“PRIME” with prob. at most 1/2. So, this is RP for compositeness.

e BPP: Like RP, but:
For all z € L, Pr,[A(x,y) = 1] > 3/4.
Forall # ¢ L, Pr,[A(z,y)=1] < 1/4.

o [t is believed that BPP C P. l.e., Randomness is useful for making things simpler
and faster (or for protocol problems) but not for polynomial versus non-polynomial.

e P/poly: L is in P/Poly if there exists a poly time A such that for every n = |z|,
there exists a fixed y such that A(x,y) is always correct. Le., y is an “advice” string.
(Remember, |y| has to be polynomial in n, etc.) Also, can view as class of polynomial-
size circuits.

RP in P/poly: Say A is an RP algorithm for L that uses ¢ random bits. Consider an
algorithm A that uses an auxiliary input y of length /(n 4 1) to run n 4 1 copies of
A, and then outputs 1 if any of them produced a 1 and outputs 0 otherwise. Then,
the probability (over y) that A fails on a given input z of length n is at most 1/27+!,
Therefore, with probability at least 1/2, a single random string y will cause A to
succeed on all inputs of length n. Therefore, such a y must exist. H

Another kind of distinction: Algs like quickselect where always give right answer, but
running time varies are called Las-Vegas algs. Another type are Monte-Carlo algs where
always terminate in given time bound, but say have only 3/4 prob. of producing the desired
solution (like RP or BPP or primality testing).

