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Handout 4: The Lovész Local Lemma and Packet Routing

Please Note: The references at the end are given for extra reading if you are interested in
exploring these ideas further. You are not required to read these references for the purposes of
this course.

1 The Lovasz Local Lemma

A basic problem that arises often in the design and analysis of randomized algorithms is to get
a good estimate (upper bound, lower bound, or both) of Pr(\/ie[m] E;), for some given events
E;. Equivalently, a good lower bound, upper bound or both, is required for Pr(/\z-e[m] E;).
As we have seen, one approach would be to use the union bound (“counting sieve”), which is
unfortunately quite weak in general. Another obvious approach, which works when the F;s are

Pr( A\ Ei) = [] Pr(Ey),

i€[m] i€[m]

independent, is to use

the “independence sieve”.

A common situation where we have to look for such bounds is when the E;s are “bad”
events, all of which we wish to avoid simultaneously. The minimal requirement for this is that
Pr(/\ie[m] E;) > 0; however, even to prove this, the independence sieve will often not apply
and the counting sieve could be quite weak. However, the independence sieve does suggest
something: can we say something interesting if each FEj; is independent of most other E;? The
powerful Lovész Local Lemma (LLL) due to Erdés and Lovéasz ([4]) is often very useful in such
cases; see Alon & Spencer [2] for many such applications. The basic version of the LLL shows
that all of a set of “bad” events E; can be avoided under some conditions:

Lemma 1.1 ([4]) Let E4, Es, ..., E,, be any events with Pr(E;) < p Vi. If each E; is mutually
independent of all but at most D > 1 of the other events E; and if 4pD < 1, then

Pr(A B7) > (1—2p)™ > 0.

=

=1

Remark. Note that if D = 0, then we can apply the independence sieve.

The LLL is a powerful tool. We now present a portion of a surprising result on routing
due to Leighton, Maggs & Rao, which makes involved use of the LLL [5]. Suppose we have a
routing problem on a network, where the paths also have been specified for each of the packets.
Concretely, we are given an undirected graph G, a set of pairs of vertices (s;,t;), and a path
F; in G that connects s; with ¢;, for each . Initially, we have one packet residing at each s;;
this packet has to be routed to ¢; using the path P;. We assume that a packet takes unit time
to traverse each edge, and the main constraint as usual is that an edge can carry at most one
packet per (synchronous) time step. Subject to these restrictions, we want to minimize the
maximum time taken by any packet to reach its destination. We may further assume that the
paths P; are all edge-simple, i.e., do not repeat any edge. Since we are also given the paths P;,
the only question is the queuing discipline we need to provide at the nodes/links (what a node



must do if several packets that are currently resident at it, want to traverse the same edge on
their next hop).

One motivation for assuming such a model (wherein the paths P; are prespecified) is that
many routing strategies can be divided into two phases: (a) choosing an intermediate destination
for each packet (e.g., the paradigm of choosing the intermediate destination randomly and
independently for each packet [8, 9]) and taking each packet on some canonical path to the
intermediate destination, and (b) routing each packet on a canonical path from the intermediate
destination to the final destination ¢;. Such a strategy can thus use two invocations of the above
“prespecified paths” model.

Let us study the objective function, i.e., the maximum time taken by any packet to reach
its destination. Two relevant parameters are the congestion ¢, the maximum number of paths
P; that use any given edge in G, and the dilation d, the length of a longest path among the
F;. Tt is immediate that each of ¢ and d is a lower bound on the objective function. In terms
of upper bounds, the simple greedy algorithm that never lets an edge go idle if it can carry
a packet at a given time step, terminates within cd steps; this is because any packet can be
delayed by at most ¢ — 1 other packets at any edge in the network.

Can we do better than cd? Recall our assumption that the paths P; are all edge-simple.
Under this assumption, the work of [5] shows the amazing result that there exists a schedule
of length O(c + d) with constant queue-sizes at each edge, independent of the topology of the
network or of the paths, and of the total number of packets! The proof makes heavy use of the
LLL, and we just show a portion of this beautiful result here.

Henceforth, we assume without loss of generality that ¢ = d, to simplify notational cluttering
such as O(c+ d). (However, we also use both ¢ and d in places where such a distinction would
make the discussion clear.) Imagine giving each packet a random initial delay, an integer chosen
uniformly at random and independently from {1,2,...,ac} for a suitable constant a > 1. We
think of each packet waiting out its initial delay period, and then traversing its path P; without
interruption to reach its delay. Of course this “schedule” is likely to be infeasible, since it may
result in an edge having to carry more than one packet at a time step. Nevertheless, the LLL
can be used to show that some such “schedules” exist with certain very useful properties, as we
shall see now.

The above (infeasible) schedule clearly has a length of at most ac + d. Let us partition
this period into frames, contiguous time intervals starting at time 1, with each frame having
a length (number of time steps) of Inc. Our basic idea is as follows. We shall prove, using
the LLL, that every edge has a congestion of at most Inc in each such frame, with positive
probability. Suppose indeed that this is true; fix such a choice for the initial delays. Then,
we would have essentially broken up the problem into at most (ac + d)/In ¢ subproblems, one
corresponding to each frame, wherein the congestion and the dilation are at most Inc in each
subproblem. Furthermore, we can solve each subproblem recursively and independently, and
“paste together” the resulting schedules in an obvious way. Finally, the facts that:

e the congestion and dilation go from d to Ind, and

e a problem with constant congestion and dilation can be scheduled in constant time (e.g.,
by the above-seen greedy protocol),

will guarantee a schedule of length (¢ + d) - 20008 (¢+d)) for us,

We now use the LLL to prove that every edge has a congestion of at most In ¢ in each frame,
with positive probability. For any given edge f, let £y denote the event that there is some
frame in which it has a congestion of more than Inc. We want to show that Pr(A, Ef) > 0.



For any given edge f and any given frame F, let E'(f, F') denote the event that the congestion
of f in F' is more than Inc. It is easy to see that the expected congestion on any given edge
at any given time instant, is at most ¢/ac = 1/a, in our randomized schedule. Thus, the
expectation of the congestion C(f,F) of f in F is at most (Inc)/a. Now, crucially, using our
assumption that the paths P; are edge-simple, it can be deduced that C(f,F) is a sum of
independent indicator random variables. Thus, by the Chernoff-Hoeffding bounds, we see that
Pr(E'(f,F)) < F*((Inc)/a,a — 1). So, by the union bound,

Pr(Ef) <Y Pr(E'(f,F)) < O(c+d)- F*((Inc)/a,a — 1),
F

i.e., a term that can be made the reciprocal of an arbitrarily large polynomial in ¢, by just
choosing the constant a large enough. To apply the LLL, we also need to upper-bound the
“dependency” among the Fy, which is easy: E; “depends” only on those Fy where the edges f
and ¢g have a common packet that traverses both of them. By our definitions of ¢ and d, we see
that each E; “depends” on at most cd = c? other events E,; combined with our above upper-
bound on each Pr(Ey), the LLL completes the result for us (by choosing a to be a suitably
large positive constant). Sophisticated use of similar ideas leads to the main result of [5]-the
existence of a schedule of length O(c + d) with constant-sized queues.

An interesting point is that the LLL usually only guarantees an extremely small (though
positive) probability for the event being shown to exist. In the notation of Lemma 1.1, p > 1/m
in many applications, and hence the probability upper bound of (1 — 2p)™ is tiny, though
positive. (For instance, in the applications of the LLL in the above routing result, p could be
(¢ +d)=®() while m could be Q(N), where N is the total number of packets; note that ¢ and
d could be very small compared to N.) In fact, it can be proven in many applications of the
LLL, that the actual probability of the desired structure occurring is very small. Thus, the
LLL is often viewed as proving the existence of a needle in a haystack; this is in contrast to
the much weaker union bound, which, when applicable, usually also gives a good probability of
existence for the desired structure (thus leading to an efficient randomized or even deterministic
algorithm to produce the structure). Breakthrough work of Beck [3] showed polynomial-time
algorithms to produce several structures guaranteed to exist by the LLL; parallel algorithms
to do this were then exhibited by Alon [1]. While these and other later results have been used
to constructivize many known applications of the LLL, some applications still remain elusive
(non-constructive).

For the above specific problem of routing using prespecified paths, polynomial-time algo-
rithms have been presented in [6]. However, routing problems often need to be solved in a
distributed fashion where each packet knows the network as well as its source and destination,
and where there is no centralized controller who can guide the routing; significant progress
toward such a distributed algorithmic analog of the above result of [5], has been made in [7].
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