CMSC 858S: Randomized Algorithms
Fall 2001
Handout 5: Pessimistic estimators

Please Note: As usual, the references at the end are given for extra reading if you are interested
in exploring these ideas further. You are not required to read these references for the purposes
of this course. The material for this handout is basically adapted from [1]. It is meant to
supplement and clarify the discussion in class on this topic; we do not reproduce all of the
discussion from class, but only some of the more intricate parts of it.

1 The basic method

The method of pessimistic estimators generalizes the method of conditional probabilities, and
is used when exact conditional probabilities are hard to compute efficiently. We develop the
method in the following setting. Suppose X1, Xo,..., X, are independent random variables,
with X; taking values in some finite set A;. (The method works in more general settings, but
we choose this one for simplicity and to see the main idea.) Suppose we have a random variable
Y = g(Xy, Xo,...,X,) such that E[Y] < y. The issue we address is: what are some sufficient
conditions for us to efficiently and deterministically find a setting of values for (X1, Xs,..., X},)
under which we have Y < y? We start with a basic theorem, and then present a useful corollary
which is applicable in many situations.

Theorem 1.1 Suppose there is a family of functions ¢o, P1,. .., ¢n, where ¢;’s domain is the
set Ay X Ag X ---x A;, and range is the set of reals; suppose further that the following properties
hold. (Recall that A; is the domain of random wvariable X;; also, ¢o is just a constant.)

(C1) Each function ¢; is computable in deterministic polynomial time;

(C2) for alli and for all (a1, as2,...,a;) € A1 X Ay x --- x A;, B[Y | (X1 =ay,...,X;=a;)] <
¢i(alaa27"'7ai);

(C3) for all i < n — 1 and for all (a1,as,...,a;), there exists some a;y1 € Ajr1 such that

pit1(a1, a2, .., ai,ai11) < piar, az, ..., a;); and
(C4) ¢o <y.
Then, we can find in deterministic polynomial time, a tuple (by,...,by) such that g(by, ..., by)

y (i.e., such that' Y < y).

Convince yourself that the following deterministic polynomial-time algorithm produces the
required tuple (by,...,by):

Fori=1,2,...,n:
b; = any element of A; such that ¢;(by,ba,...,0;) < ¢hi—1(b1,ba,...,bi—1).

The main issue now is: how to find such a class of functions ¢;? A commonly applicable
solution to this problem is given by the following corollary.

<

Corollary 1.1 Suppose there exists a random variable Z such that we have the following three
properties.

(P1) For all i and for all (a1,a2,...,a;) € A1 x Ag x---x A, E[Y | (X1 =a1,...,X; =a;)] <
E[Z | (X1 :al,...,Xi :ai)];

(P2) E[Z] <y; and

(P3) suppose we modify the distribution of (X1, Xa,...,Xy) in any manner such that the X;
are still independent, and where each X; is sampled from some arbitrary given distribution
Dj; then, we can compute E[Z] in deterministic polynomial time.

Then, we can find in deterministic polynomial time, a tuple (by,...,by,) such that g(by, ..., by)
y (i.e., such that Y <y).

Proof. Define ¢;(a1,as,...,a;) =E[Z | (X1 = a1,...,X; = a;)]. We now verify that proper-
ties (C1)—(C4) hold. (C2) follows from (P1), and (C4) follows from (P2). Let us verify that (C1)
holds; we need to show that for all i and for all (aq, as,...,a;), B[Z | (X1 =aq,...,X; = a;)] is
efficiently computable. But recall that the X; are independent random variables; suppose each
X is chosen from some distribution D;-. Then, conditioning on “X; = aq,...,X; = a;” is the
same as generating all the X; independently, such that:

e for j <, Xj is chosen from the distribution D; that places all the probability mass on
the element a;; and

o for j >4, X; is chosen from the distribution D7.

Thus, hypothesis (P3) shows that (C1) is true.
Finally, let us verify (C3). We have

E[Z| (X1 :al,...,Xi :a,)] = Z PI‘[XH_l :ai+1]-E[Z| (X1 :al,...,Xi_H :ai+1)],
ai+1€A4+1

since all the X; are independent. So, since Zai+1eA
that

- Pr[X;;1 = a;41] = 1, it is easy to see

Elaz-“ € Ai+1 : E[Z | (X1 =ai,... ,Xi+1 = ai+1)] < E[Z | (X1 =ap,... ,Xi = ai)],

which shows that (C3) holds. O

2 An application to low-congestion routing

Recall this problem from our earlier discussion on randomized rounding. Let [t] denote the set
{1,2,...,t}. We are given a graph G = (V, E) and k pairs of vertices (s;,%;). For each ¢ € [k],
we are given a collection

Pi={Pi1,Pia2,..., P}

of (si,t;)-paths. The objective is to choose a path from P; for each i, in order to minimize
the congestion: the maximum, over all edges f, of the total number of chosen paths that pass
through f. Also recall that the LP relaxation of the natural integer programming formulation
is as follows:

Minimize W subject to:

<

(11) Vf S E, E(i,j):fepi,j ZZ] S W, and
(i) 27, > 0.

Let {z];} denote an optimal solution that we have computed for this LP, with W* being the
corresponding optimal LP value. We wish to round the z7, to some values in {0,1} that
satisfy the above constraints, without losing much in the objective function. Recall that the
randomized rounding algorithm of [2] does the following: independently for each i € [k], choose
exactly one z;; to be 1, using the 2] as probabilities in the natural way. It is also shown in [2]
using the Chernoff-Hoeffding bounds that with probability at least 1/2, we get a solution with
objective function value at most W*(1 + d), where § = AT(W*,1/(2m)) and m is the number
of edges in G.

We now derandomize this algorithm using Corollary 1.1. To do so, let us first cast our
problem in the setting of Section 1. Let:

e A; = P;, the given set of possible (s;,t;)—paths;

e X; be the random choice for the (s;,t;)-path made by the above randomized rounding
algorithm, and z; ; be the indicator random variable for the event “X; = P; ;”;

e cong(f) be the random variable denoting the congestion on edge f; i.e., cong(f) =
E(i,j):fePi,j Zl:]’

e Y be the indicator random variable for “3f : cong(f) > W*(1+4)”, and

e y=1/2.

Then, as seen above, the analysis of [2] shows that E[Y] < 1/2. If we derandomize this
algorithm, we will deterministically produce a value for (X1, Xs,..., Xy) for which ¥ < 1/2,
i.e., for which Y = 0; this is what we need. To show that pessimistic estimators can be applied
fruitfully here, let us recall the analysis of [2]:

ElY] < Z Pr[cong(f) > W*(1 + §)]
fEE

< 3T E[(1 4 gy 140))
JeE

< > 1/(2m) (by the definition of d)
feE
= 1/2.

A little reflection shows that in fact Vi V(a1 as, ..., a;),

EY | (Xi=a1,...,X;=q;)] < Y E[1+0)cneD)=W0) | (X) =qy,...,X; =)]
fEE
= E[(D (1 +0)cone)- W0y | (X = a,..., X; = a3)].
fEE

Thus, guided by Corollary 1.1, let us define

7 — Z(l + 5)cong(f)—W*(1+6)‘
fEE

We need only prove that property (P3) holds; in turn, we need only show the following. Let
f € E be an arbitrary but fixed edge. Suppose X1, Xo, ..., X} are independent random variables
where each X; is sampled from some arbitrary given distribution D;. Then, we just need to
prove that E[(1 4 §)cne(/)=W*(1+9)] can be computed efficiently. To see this, rewrite cong(f)
as the sum of k terms, where the ¢th term is the congestion contributed by X;:

k
cong(f) =) cong;(f), where cong;(f) = > 2.
i=1

J:fEP;;
Note that each cong,(f) takes on values in {0,1}, with
Prlcong;(f) = 1] = Pr[X; € {P;; : f € Py ;}]

being efficiently computable. Also, all the cong;(f) are independent, since the X; are all inde-
pendent. Thus,

k
E[(l + 5)cong(f)fW*(1+5)] — (1 + 5)7W*(1+5) . H E[(l + 5)congi(f)]
=1

can be efficiently computed, concluding our argument.

References

[1] P. Raghavan. Probabilistic construction of deterministic algorithms: approximating
packing integer programs. Journal of Computer and System Sciences, 37:130-143, 1988.

[2] P. Raghavan and C. D. Thompson. Randomized rounding: a technique for provably good
algorithms and algorithmic proofs. Combinatorica, 7:365-374, 1987.

