CMSC 858S: Randomized Algorithms
Fall 2001
Handout 6: The vertex-connectivity of random graphs

In this short handout, we complete the discussion from class on the vertex-connectivity of
random graphs. As mentioned in class, stronger results are known; see [1]. The discussion here
is adapted from [2].

Recall the context. We choose a random graph G from G (n, p), where p = p(n) > (In®n)/n,
say. Fix any constant 0 > 0, and let k = [(n — 1)p(1 — 20)]. We wish to prove that as n — oo,
the probability that G is not k-vertex-connected, tends to 0. We now zoom to the point at
which we stopped this argument in class. Let ¢ = [(n — 1)pd], and s = k — 1. We aim to show
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tends to 0 as m — oo, under the above-seen assumptions on p,d etc.
We start with some simplifications. We have
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We now consider two cases. First suppose s < n/2. Since n — s > n/2, we get from (1), if
n is large enough, that
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since t > Inn for any fixed § > 0, as n — oo.



Next suppose s > n/2. Here, we must have p > 1/2; so, (1) shows that
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Note that n — s > 2dn. So, since § is some positive constant, we have when n gets arbitrarily
large that In(n — s) < (n — s)/4. Thus,
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again since t > Inn and since (n — s) is arbitrarily large as n — 0o.
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