
15-859(M): Randomized Algorithms Lecturer: Anupam Gupta
Topic: Lower Bounds on Randomized Algorithms Date: September 22, 2004
Scribe: Srinath Sridhar

4.1 Introduction

In this lecture, we will first consider the problem of boolean function evaluation and prove that
randomized algorithms (in the expected case) perform better than deterministic algorithms. The
boolean circuits that we consider, can be naturally extended to obtain a game tree. We will then
state Von Neumann’s minimax theorem and its extension - Yao’s principle. Finally, we show how
Yao’s principle can be used to obtain lower bounds on the expected running time of randomized
algorithms.

4.2 Boolean Function Evalutation

Figure 4.2.1: A depth 2k AND-OR circuit

Boolean functions in general can be formulated using various forms. For the purposes of this lecture
we shall focus on functions that have only two kinds of gates: AND and OR. The number of inputs
to each gate is restricted to two. The functions are nested by alternating AND and OR gates, so
that the circuit corresponding to the function is similar to Figure 4.2.

We assume that the circuit forms a full binary tree (each internal node being an AND or OR gate)
of height 2k. The number of inputs of the circuit is 22k. The root node is an AND gate and all

1

the nodes at height 2k − 1 are OR gates. Note that, the functions considered are monotone and
therefore complementation is not permitted and also the wires are not allowed to overlap or branch
out.

The problem of boolean function evaluation is to compute the result of the function (circuit) while
minimizing the number of queries. An algorithm makes a query if it looks at one of the input
values. We make a quick digression to game trees, so that it is easier to compare games with
boolean circuits.

Game trees are used extensively by computer programs to play games. In a game tree each
node corresponds to a position and each adjacent out-edge a legal move that can be played from
the position. The root of the game tree is the current position from which the analysis is being
performed. The even nodes correspond to positions from which player 1 (or computer) picks the
move and the odd nodes position from which player 2 (opponent) moves. To decide on the best
move from the current position, player 1 picks the move that maximizes an evaluation function. In
doing so he assumes that the opponent plays optimally and therefore picks the move that minimizes
the evaluation function at the next step.

The boolean circuit can be naturally viewed as a game tree, where the edges are directed from the
root to the leaves. The OR gates correspond to the positions from which player 1 moves (MAX
nodes) and the AND gates the positions from which the opponent moves (MIN nodes). The number
of rounds of a game tree is defined as the number of moves performed by a single player. Therefore
a round of the boolean circuit can be thought of as a pair of AND followed by an OR gate. In the
game tree (boolean circuit) considered above, there are k rounds.

It is well known that an AND-OR circuit can be converted to a NOR circuit. Specifically, a circuit
where the AND gates and the OR gates alternate can be converted to a NOR circuit, by replacing
each gate of the AND-OR circuit with a NOR gate. Consider the the root (AND gate) and the two
children (OR gates), assume that the wires of the two children are A, B, C and D. Then,

(A ∨B) ∧ (C ∨D) = ¬(¬(A ∨B) ∨ ¬(C ∨D))
= (A NOR B) NOR (C NOR D)

Therefore, by induction (on depth) the AND-OR circuit can be converted to a NOR circuit by simple
replacement. For the rest of the lecture, we will use an equivalent NOR circuit. We now return
back to the question of computing the value of the circuit for a given set of inputs while minimizing
the number of inputs examined (number of queries performed). Assume that the number of input
values n = 22k

Exercise 4.2.1 The number of input values examined by any deterministic boolean function eval-
uation algorithm is n = 22k.

We make the following important observation. Consider any NOR gate, and assume that its inputs
are A and B. If a deterministic algorithm computes that A = 0, then it needs the value of B to
compute A NOR B. If a deterministic algorithm computes that A = 1, then we can assume that
it does not compute/examine the value of B. To perform better than the deterministic algorithm,
we pick one out of A and B randomly and evaluate/examine its value. If exactly one of A and B

2

is 1, then the randomized algorithm has a 0.5 probability of computing/examining the wire with
value 1 first.

This leads us to the following algorithm. Assume that the tree used by the recursive function is T ,
rooted at r. Further assume that the two children of r are L and R.

Eval-Rand (Tree T)

1. pick x ∈ {L,R} uniformly at random

2. a := Eval-Rand (subtree rooted at x)

3. if a = 1 then

(a) return 0

4. else

(a) Eval-Rand (subtree rooted at y ∈ {L,R}\x)

Theorem 4.2.2 The expected number of queries performed by function Eval-Rand:

cost(Eval-Rand) ≤ 3k = nlog4 3

Proof: By induction on the number of rounds of the circuit. Let Xk be the random variable that
denotes the number of queries performed by the algorithm on a circuit with k rounds. We want to
compute E[Xk]. Let o denote the output of the circuit. Assume that the values carried by the two
wires to r are i11 and i12 and the values carried by the wires to the left gate at depth one are i21 and
i22 and that of the right gate being i23 and i24. We break the analysis of the expected cost into two
cases. The two cases are shown in Figure 4.2.

Case 1: Output o = 1. In this case, though it might be necessary to examine both inputs of
depth 1, randomization helps improve the cost at depth 2. We have,

(o = 1) =⇒ (i11 = 0 and i21 = 0)

(i11 = 0) =⇒ (i21 = 1 or i22 = 1), (i12 = 0) =⇒ (i23 = 1 or i24 = 1)

In this case, both the recursive calls Eval-Rand (Tree rooted at L) and Eval-Rand (Tree rooted
at R) are performed. Consider either of the two calls. The child x is chosen at random and
evaluated with cost E[Xk−1]. The value a = 0 with probability 0.5 and the function has to perform
an additional recursive call with cost E[Xk−1]. The value a = 1 with probability 0.5 in which case
we incur no additional cost besides E[Xk−1] used to compute the value of a.

Therefore in total,

E[Xk|o = 1] = 2E[Xk−1]Pr[x = 0] + E[Xk−1]Pr[x = 1]
≤ E[Xk−1] + 0.5E[Xk−1] < 3E[Xk−1]

3

Figure 4.2.2: Two cases in the analysis of the number of queries performed by Eval-Rand

Case 2: Output o = 0. Using the same notations, we have,

(o = 0) =⇒ (i11 = 1 or i12 = 1)

In the worst case, exactly one of i1i = 1 and w.l.o.g assume i11 = 0 and i12 = 1.

i11 = 0 =⇒ (i21 = 1 or i22 = 1) and i12 = 1 =⇒ (i23 = 0 and i24 = 0)

Once again, w.l.o.g assume i21 = 1 and i22 = 0. In the function call Eval-Rand(T), x = L and
therefore a = 0 with probability 0.5. In this case, the entire of right subtree has to be queried
with cost 2E[Xk−1]. Furthermore, in the function call Eval-Rand(Tree rooted at L), a = 1 with
probability 0.5 in which case the expected number of queries is E[Xk−1]; a = 0 with probability
0.5 in which case the expected number of queries is E[Xk−1].

Now consider the function call Eval-Rand(T), x = R and therefore a = 1 with probability 0.5,
and here we incur a cost of 2E[Xk−1] to compute the value of a. Using the notation, a1, al and
ar to denote the values of a in the function calls Eval-Rand(T), Eval-Rand(L) and Eval-Rand(R)
respectively we have,

E[Xk|o = 0] ≤ E[Xk|a1 = 0]Pr[a1 = 0] + E[Xk|a1 = 1]Pr[a1 = 1]
= 0.5(4E[Xk−1]Pr[al = 0] + 3E[Xk−1]Pr[al = 1]) + 0.5(2E[Xk−1])
= 0.5(4 + 1.5)E[Xk−1] < 3E[Xk−1]

The proof follows induction (on the number of rounds) with a trivial base case.

4

Moves H T
H 1 -1
T -1 1

Figure 4.3.3: Payoff Matrix for matching pennies
game. Row Player: Roberta and Column Player:
Charles

4.3 Games

In this section we will focus on two player zero sum games. Zero sum games have the property that
one player’s loss is exactly the other player’s gain. A standard example is the game stone, paper
and scissors. We will assume that the two players are Roberta and Charles. The payoff (rules)
of a game is usually expressed in a payoff matrix M , where the rows correspond to the possible
moves for Roberta and the columns the possible moves for Charles. An entry Mi,j in the matrix
corresponds to the payoff awarded to Roberta if she plays i and Charles plays j. In general, if the
game supports n moves for Roberta and m for Charles, the payoff matrix is of size n×m.

We will consider the game of matching pennies. Roberta and Charles simultaneously show one side
of their penny. If the displayed sides match then Roberta wins one dollar and if the sides don’t
match then Charles wins a dollar. The payoff matrix for the game is shown in Figure 4.3.3.

If Roberta picks move i, then she is guaranteed a payoff minjMi,j . The lower bounds for the gain
of Roberta V̂R and Charles V̂C is given by

V̂R = max
i

min
j
Mi,j

and
V̂C = min

j
max
i
Mi,j .

In the game of matching pennies, V̂R = −1 and V̂C = 1.

Claim 4.3.1 For any payoff matrix V̂R ≤ V̂C
Proof: Let V̂R = Mi,k and V̂C = Ml,j . We have for all m, V̂R ≤Mi,m, and specifically, V̂R ≤Mi,j .
Similarly, for all m, V̂C ≥Mm,j , and specifically V̂C ≥Mi,j and therefore V̂R ≤ V̂C .

In games where V = V̂R = V̂C , the game is said to have a solution and V is called the value of the
game. In such games, the two players can advertise what they are going to play without any harm.

Definition 4.3.2 A pure strategy is defined as a deterministic choice to play in a game.

Definition 4.3.3 A mixed strategy is defined by a probability distribution on deterministic strate-
gies.

5

We will now focus on mixed strategies. Let pi be the probability that Roberto picks move i and
let qj be the probability that Charles picks move j. Therefore,

Expected payoff =
n∑
i=1

m∑
j=1

piqjMi,j = pTMq,

where vectors p and q contain the probabilities of selecting moves. Similar to the previous definition
for pure strategies, we can obtain lower bounds on the payoffs for Roberta and Charles as

V̂R = max
p

min
q
pTMq

and
V̂C = min

q
max
p
pTMq

Note that the min and max are computed over all possible distributions p and q over deterministic
choices.

Theorem 4.3.4 (Von Neumann’s Minimax Theorem [Ne28]) For any two person zero sum game
with game matrix M ,

max
p

min
q

pTMq = min
q

max
p
pTMq

Note that in the above theorem, if Roberta announces the probability distribution that she is using,
Charles picks a single move (corresponding to the maximum term in vector pTM) and his strategy
becomes deterministic. Therefore an equivalent definition is

V̂R = max
p

min
j
pTMej ,

where ej is a vector with 0 in all positions except j which is set to 1. This equivalent definition of
V̂R leads to Loomis’ theorem.

Theorem 4.3.5 (Loomis’ Theorem [Lo46]) For any two player zero sum game specified by game
matrix M ,

max
p

min
j
pTMej = min

p
max
i
eTi Mq

4.4 Yao’s Principle

We can use the above ideas from game theory to lower bound the running time of randomized
algorithms. This is the only known technique currently used to establish lower bounds. Consider
any randomized algorithm that uses a finite number of random bits. Fixing the values of the
random bits specifies a deterministic algorithm. The values for the random bits can themselves be
used to label each such deterministic algorithm. Informally a randomized algorithm can be viewed
as specifying a probability distribution over several deterministic algorithms.

Consider a matrix M similar to the game matrix. For any randomized algorithm, the rows of M
correspond to different inputs and the columns correspond to different deterministic algorithms

6

(obtained by fixing the random bits of a randomized algorithm). The payoff Mi,j of the matrix
corresponds to the running time of algorithm Aj on input Ii. Let vector p denote the probability
distribution on the inputs and vector q the probability distribution on the algorithms and ej the
(0, 1)-vector with 1 in exactly position j.

Using the same ideas from the previous section, we have,

Mi,j = C(Aj , Ii),
E[C(Aj , Ip)] = pTMej ,

E[C(Aq, Ii)] = eTi Mq

Using 4.3.5 we have,
max
p

min
q

E[C(Ip, Aq)] = min
q

max
p

E[C(Ip, Aq)]

Dropping the max term on the left side and the min term on the right side from the above equation
gives us Yao’s principle.

Proposition 4.4.1 (Yao’s Principle [Ya77]) For all distributions p over I and q over A,

min
A∈A

E[C(Ip, A)] ≤ max
I∈I

E[C(I,Aq)]

We will now show a simple example and illustrate how Yao’s principle can be applied to establish
a lower bound on randomized algorithms.

The find-bill problem can be stated as follows. There are n boxes and exactly one box contains
a dollar bill, and the rest of the boxes are empty. A probe is defined as opening a box to see
if it contains the dollar bill. The objective is to locate the box containing the dollar bill while
minimizing the number of probes performed. Consider the following randomized algorithm:

1. select x ∈ {H,T} uniformly at random

2. if x = H then

(a) probe boxes in order from 1 through n and stop if bill is located

3. else

(a) probe boxes in order from n through 1 and stop if bill is located

The expected number of probes made by the algorithm is (n+1)/2. Since, if the dollar bill is in the
ith box, then with probability 0.5, i probes are made and with probability 0.5, (n − i + 1) probes
are needed.

Lemma 4.4.2 A lower bound on the expected number of probes required by any randomized algo-
rithm to solve the find-bill problem is (n+ 1)/2.

7

Proof: To use Yao’s principle we need to specify a distribution p on the input. In this case, we
assume that the bill is located in any one of the n boxes uniformly at random. We only consider
deterministic algorithms that does not probe the same box twice. By symmetry we can assume
that the probe order for the deterministic algorithm is 1 through n. We therefore have,

min
A∈A

E[C(A, Ip)] =
n∑
i=1

i

n
=

1
n

n∑
i=1

i =
n+ 1

2

≤ max
I∈I

E[C(I,Aq)],

by using Yao’s principle. Therefore any randomized algorithm Aq requires at least (n+1)/2 probes
in expectation.

References

[Lo46] L. H. Loomis. On a theorem of von Neumann Proceedings of the National Academy of
Sciences of the U.S.A., 32:213-215, 1946.

[Ne28] J. von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100:295-320,
1928.

[Sn85] M. Snir. Lower bounds on probabilistic linear decision trees. Theoretical Computer Science,
38:69-82, 1985.

[Ya77] A. C-C. Yao. Probabilistic computations: Towards a unified measure of complexity. Pro-
ceedings of the 17th Annual Symposium on Foundations of Computer Science, 222-227,
1977.

8

