
15-859(M): Randomized Algorithms Lecturer: Anupam Gupta
Topic: Occupancy Problems and Hashing Date: Sep 29
Scribe: Runting Shi

6.1 Occupancy Problem

Bins and Balls Throw n balls into n bins at random.

1. Pr[Bin 1 is empty] = (1− 1
n)n v 1

e .

2. Pr[Bin 1 has k balls] =
(
n
k

)
1
n

k(1− 1
n)n−k ≤ 1

e·k! .

Sterling’s Approximations

(
n

k
)k ≤

(
n

k

)
≤ (

ne

k
)k

Thus, letting Ai,k be the event that bin i contains at least k balls, we have

Pr(Ai,k) =
n∑

i=k

(
n

i

)i (i

n

)i (
1− i

n

)n−k

Thus, by the union bound,

Pr(any bin contains more than k balls) ≤
n∑

i=1

Pr(Ai,k)

In order to approximate this, we need to derive a simple upper bound for Pr(Ai,k). We’ll make use
of the following elementary inequality, for any i ≤ n:(n

i

)i
≤

(
n

i

)
≤

(ne

i

)i

Using this we can easily derive the bound

Pr(Ai,k) ≤
n∑

i=k

(ne

i

)i
(

1
n

)i

=
(e

i

)k
(

1 +
e

k
+

(e

k

)2
+ · · ·

)
=

(e

k

)k 1
1− e/k

1

Now comes the tedious part. Let k = d(3 log n)/ log log ne. Then

Pr(Ai,k) ≤
(e

k

)k 1
1− e/k

≤ 2
(

e

3 log n/ log log n

)k

≤ 2
(
e1−log 3−log log n+log log log n

)k

≤ 2
(
e− log log n+log log log n

)k

≤ 2
(
e
−3 log n+3 log log log n

log log n
log n

)
≤ 2

(
e−2 log n

)
=

2
n2

for n sufficiently large that (log log log n)/ log log n < 1/3.

It follows that

Pr(no bin contains more than d(3 log n)/ log log ne balls) = 1−
n∑

i=1

Pr(Ai,k)

≥ 1− 2
n

Theorem 6.1.1 Max Load

When n balls are thrown into n bins, the maximum number of balls in any bin is O(log n
log log n) with

high probability, i.e.,

E[max load] =
lnn

ln lnn
(1 + o(1))

max load = Θ(
lnn

ln lnn
) w.h.p.

It can be shown that this is a tight bound.

Coupon Collector’s Problem Suppose I throw kn balls.

Pr[bin 1 is empty] v (
1
e
)k

If k = c lnn + d, then

Pr[bin 1 is empty] v
1

ednc

2

Pr[∃some bin empty] ≤ n

nced
≤ 1

nc−1

Therefore, w.h.p. O(n log n) balls suffice.

Claim:

E[number of balls to see all bins] = n ·Hn

Imagine a counter (starting at 0) that tells us how many boxes have at least one ball in it. Let X1

denote the number of throws until the counter reaches 1 (so X1 = 1). Let X2 denote the number of
throws from that point until the counter reaches 2. In general, let Xk denote the number of throws
made from the time the counter hit k-1 up until the counter reaches k.

So, the total number of throws is X1 + ...+Xn, and by linearity of expectation, what we are looking
for is E[X1] + ... + E[Xn].

How to evaluate E[Xk]? Suppose the counter is currently at k-1. Each time we throw a ball, the
probability it is something new is (n-(k-1))/n. So, another way to think about this question is as
follows:

Coin flipping: we have a coin that has probability p of coming up heads (in our case, p = (n-(k-
1))/n). What is the expected number of flips until we get a heads?

It turns out that the ”intuitively obvious answer”, 1/p, is correct. But why? Here is one way to
see it: if the first flip is heads, then we are done; if not, then we are back where we started, except
we’ve already paid for one flip. So the expected number of flips E satisfies: E = p*1 + (1-p)*(1 +
E). You can then solve for E = 1/p.

Putting this all together, let CC(n) be the expected number of throws until we have filled all the
boxes. We then have:

CC(n) = E[X1] + ... + E[Xn]
= n/n + n/(n− 1) + n/(n− 2) + ... + n/1
= n(1/n + 1/(n− 1) + ... + 1/1)
= nHn

QED.

Pr[x ≥ n lnn + cn or x ≤ n lnn− cn] v (e−e−c − e−ec
)

3

6.2 Hashing

FORMAL SETUP

• Keys come from some large universe M. (e.g, all < 50-character strings)

• Some set S in M of keys we actually care about (which may be static or dynamic).

• do inserts and lookups by having an array N of size |N |, and a HASH FUNCTION h : M →
{0, ..., |N | − 1}. Given element x, store in N[h(x)].

• Will resolve collisions by having each entry in A be a linked list. Collision is when h(x) =
h(y). There are other methods but this is cleanest – called ”separate chaining”. To insert,
just put at top of list. If h is good, then hopefully lists will be small.

UNIVERSAL HASHING

A hash family H is 2-universal if for all x 6= y in M,

Prh∈H [h(x) = h(y)] ≤ 1
|N |

Let x, y ∈ M .

Cxy =

{
1 if h(x) = h(y)
0 otherwise

E[Cxy] ≤
1
|N |

E[number of elts of S that collide with y] =
∑
x 6=y

Cxy ≤
|S|
|N |

= E[amount of time when accessing y]

If |N | ≥ |S|, then E[amount of time when accessing y] = o(1).

One way to construct a 2-universal hash family:

Here, let M = {0, ...,m− 1} and N = {0, ..., n− 1}. Pick prime p ≥ m (or, think of just rounding
m up to nearest prime). Define

ha,b(x) = ((ax + b) mod p) mod n.

H = {hab|a,b in GF (p) and a 6= 0}

It is easy to show that |H| = p(p− 1).

4

Theorem 6.2.1 Lower Bound

H is a hash family M → N , then ∃x 6= y ∈ M , s.t. Pr[h(x) = h(y)] ≥ 1
|N | −

1
|M | .

Pf: via Yao’s principle.

Strongly 2-univeral hash family see Anupam’s notes

Perfect hash functions Definition: A hash function that maps each different key to a distinct
integer. Usually all possible keys must be known beforehand. A hash table that uses a perfect hash
has no collisions.

A family of hash functions H = {h : M → N} is said to be a perfect hash family if for each set
S ⊆ M of size s ≤ n, there exists a hash function h ∈ H that is perfect for S.

If |N | = |S|, every perfect hash family has size 2Ω(|N |).

2-level hashing [Fredman Komlos Szemerd]

Proposal: hash into table of size N . Will get some collisions. Then, for each bin, rehash it, squaring
the size of the bin to get zero collisions.

To construct a 2-level hash function:

1. Pick h ∈ H, where H is a 2-universal hash family M → N and |N | = |S|.

2. If number of collisions > |N |, goto step 1

3. If Ni elements hashed to bin i ≤ N , then pick hi : M → N2
i . If any collisions goto step 3.

4. Do step 3 for all bins.

Pr[x, y collide] ≤ 1
|N |

E[number of collisions] ≤
(
|S|
2

)
1
|N |

1. In step 1 and 2, since |N | = |S|, let C denote number of collisions.

E[C] ≤
(
|S|
2

)
1
|S|

<
|S|
2

According to Markov Inequality,

Pr
[
C > 2 · |S|

2

]
≤ 1

2

2. C =
∑

i

(
Ni
2

)
≤ |N | = |S|

5

3. If Hi : M → N2
i , set S is of size Ni.

E[Ci] =≤
(

Ni

2

)
· 1
N2

i

≤ 1
2

Therefore, according to Markov Inequality,

Pr[Ci ≥ 1] ≤ 1
2

Now let’s study the space requirement of this scheme.

Space ≤ |N |+
∑

i

N2
i ≤ 2|S|

In addition, to store the hash functions, we need to use O(|S|) more bits.

Unfortunately, this approach works for static dictionary only, but not dynamic dictionaries where
we want to support insert/delete operations.

6

