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6.1 Occupancy Problem

Bins and Balls Throw n balls into n bins at random.

1. Pr[Bin 1 is empty] = (1 —1)" -~ 1.
2. Pr[Bin 1 has k balls] = (7)1F(1 = Lk < 1.

Sterling’s Approximations

Thus, letting A; , be the event that bin ¢ contains at least £ balls, we have

s = £ () (-2)”

1=

Thus, by the union bound,

n
Pr(any bin contains more than k balls) < Z Pr(A; )
i=1

In order to approximate this, we need to derive a simple upper bound for Pr(A; ;). We’ll make use
of the following elementary inequality, for any ¢ < n:

()= (7)=(5)

Using this we can easily derive the bound

Pr(4;;) < 'n (nze)z<ib>Z




Now comes the tedious part. Let k = [(3logn)/loglogn]. Then

Pr(4;;) < (Z)kl—le/k
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for n sufficiently large that (logloglogn)/loglogn < 1/3.
It follows that

n
Pr(no bin contains more than [(3logn)/loglogn] balls) = 1-— Z Pr(A; ;)
i=1
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Theorem 6.1.1 Max Load

When n balls are thrown into n bins, the maximum number of balls in any bin is O(y g‘){g’gn) with
high probability, i.e.,

Inn

E[maz load) = lnlnn(l +0(1))
Inn

mazx load = 9(ln 1nn) w.h.p.

It can be shown that this is a tight bound.

Coupon Collector’s Problem Suppose I throw kn balls.

1
Pr[bin 1 is empty] « (f)k
e

If kK =clnn + d, then

Pr[bin 1 is empty] -~ ——
edn
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Therefore, w.h.p. O(nlogn) balls suffice.

Claim:

E[number of balls to see all bins] =n - Hy,

Imagine a counter (starting at 0) that tells us how many boxes have at least one ball in it. Let X
denote the number of throws until the counter reaches 1 (so X; = 1). Let X9 denote the number of
throws from that point until the counter reaches 2. In general, let X} denote the number of throws
made from the time the counter hit k-1 up until the counter reaches k.

So, the total number of throws is X +...+ X,,, and by linearity of expectation, what we are looking
for is E[X1] + ... + E[X,].

How to evaluate E[Xj]? Suppose the counter is currently at k-1. Each time we throw a ball, the
probability it is something new is (n-(k-1))/n. So, another way to think about this question is as
follows:

Coin flipping: we have a coin that has probability p of coming up heads (in our case, p = (n-(k-
1))/n). What is the expected number of flips until we get a heads?

It turns out that the ”intuitively obvious answer”, 1/p, is correct. But why? Here is one way to
see it: if the first flip is heads, then we are done; if not, then we are back where we started, except
we’ve already paid for one flip. So the expected number of flips E satisfies: E = p*1 + (1-p)*(1 +
E). You can then solve for E = 1/p.

Putting this all together, let CC(n) be the expected number of throws until we have filled all the
boxes. We then have:

CC(n) = E[X1]+ ... + E[X,)]
=n/n+n/(n—1)+n/(n—-2)+...+n/l
=n(l/n+1/(n—1)+...4+1/1)
=nH,

QED.

Prjz >nlnn+cnor x <nlnn —cn] « (e~



6.2 Hashing

FORMAL SETUP

e Keys come from some large universe M. (e.g, all < 50-character strings)
e Some set S in M of keys we actually care about (which may be static or dynamic).

e do inserts and lookups by having an array N of size |[N|, and a HASH FUNCTION h: M —
{0,...,|N| —1}. Given element x, store in N[h(x)].

e Will resolve collisions by having each entry in A be a linked list. Collision is when h(x) =
h(y). There are other methods but this is cleanest — called ”separate chaining”. To insert,
just put at top of list. If h is good, then hopefully lists will be small.

UNIVERSAL HASHING
A hash family H is 2-universal if for all x # y in M,

Priculh(z) = h(y)] < o

Let z,y € M.

Coy = {1 if h(z) = h(y)

0 otherwise

= E[amount of time when accessing y]

If IN| > |S|, then E[amount of time when accessing y] = o(1).
One way to construct a 2-universal hash family:

Here, let M = {0,...,m — 1} and N = {0,...,n — 1}. Pick prime p > m (or, think of just rounding
m up to nearest prime). Define

hop(x) = ((az +b) mod p) mod n.
H = {hala,b in GF(p) and a # 0}

It is easy to show that |H| = p(p — 1).



Theorem 6.2.1 Lower Bound
H is a hash family M — N, then 3z #y € M, s.t. Pr[h(z) = h(y)] > ﬁ - ﬁ

Pf: via Yao’s principle.
Strongly 2-univeral hash family see Anupam’s notes

Perfect hash functions Definition: A hash function that maps each different key to a distinct
integer. Usually all possible keys must be known beforehand. A hash table that uses a perfect hash
has no collisions.

A family of hash functions H = {h : M — N} is said to be a perfect hash family if for each set
S C M of size s < n, there exists a hash function A € H that is perfect for S.

If |[N| = |S|, every perfect hash family has size 2V,

2-level hashing [Fredman Komlos Szemerd]

Proposal: hash into table of size N. Will get some collisions. Then, for each bin, rehash it, squaring
the size of the bin to get zero collisions.

To construct a 2-level hash function:

1. Pick h € H, where H is a 2-universal hash family M — N and |[N| = |S|.
2. If number of collisions > |N|, goto step 1
3. If N; elements hashed to bin ¢ < N, then pick h; : M — Nf . If any collisions goto step 3.

4. Do step 3 for all bins.

1
Pr[x, y collide] < —
V]
1

E[number of collisions| < <‘§> v

1. In step 1 and 2, since |[N| = |S|, let C denote number of collisions.

STy 1 _ [S]

According to Markov Inequality,
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3. If H;: M — N?, set S is of size N;.
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Therefore, according to Markov Inequality,
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Now let’s study the space requirement of this scheme.

Space < |N| + Zsz < 2|5|
i
In addition, to store the hash functions, we need to use O(|S]|) more bits.
Unfortunately, this approach works for static dictionary only, but not dynamic dictionaries where

we want to support insert/delete operations.



