
Hashing

Review:

• Goal: map s items from size m universe to table of size n

• some items get mapped to same place: “collision”

• Problem: any function has bad set mapping m/n items to same bucket

• Solution: build family of functions, choose one that works well

Hash Families:

• Random function has good behavior, but hard to compute efficiently

• Goal: O(1) access time

• So can only look at constant number of cells.

• Each holds value in range 1, . . . ,m (logm bits)

• So, fixed number of cells can only distinguish poly(m) functions

• This bounds size of hash family we can choose from

Recall random function analysis:

• set S of s items

– what is expected time for i access?

– Cij = 1 if i, j collide

– Time to find i is
∑

j Cij

– expected value (s− 1)/n ≤ 1 for s ≤ n (and optimal for s)

2-universal family:

• how much independence was used above? pairwise (search item versus each other item)

• so: OK if items land pairwise independent

• pick p in range m, . . . , 2m (not random)

• pick random a, b

• map x to (ax+ b mod p) mod n

– pairwise independent, uniform before mod m

– So pairwise independent, near-uniform after mod m

• argument above holds: O(1) expected search time.

1



• represent with two O(logm)-bit integers: hash family of poly size.

• em max load?

– expected load in a bin is 1

– so O(
√
n) with prob. 1-1/n (chebyshev).

– this bounds expected max-load

– some item may have bad load, but unlikely to be the requested one

perfect hash families

• perfect hash function: no collisions

• for any S of s ≤ n, perfect h in family

• eg, set of all functions

• but hash choice in table: mO(1) size family.

• exists iff m = 2Ω(n) (probabilistic method) (hard computationally)

– random function. Pr(perfect)= n!/nn

– So take nn/n! ≈ en functions. Pr(all bad)= 1/e

– Number of subsets: at most mn

– So take en · lnmn = nen lnm functions. Pr(all bad)≤ 1/mn

– So with nonzero probability, no set has all bad functions (union)

– number of functions: nen lnm = mO(1) if m = 2Ω(n)

• Too bad: only fit sets of logm items

• also, hard computationally

Alternative try: use more space:

• How big can s be for random s to n without collisions?

– Expected number of collisions is E[
∑
Cij] =

(
s
2

)
(1/n) ≈ s2/2n

– So s =
√
n works with prob. 1/2

• Is this best possible?

– Birthday problem: (1− 1/n) · · · (1− s/n) ≈ e−s
2/2n

– So, when s =
√
n has Ω(1) chance of collision

– 23 for birthdays

Two level hashing solves problem

2



• Hash s items into O(s) space

• Build quadratic size hash table on contents of each bucket

• bound
∑
b2
k =

∑
i[i ∈ bk] =

∑
Ci + Cij = O(s)

• expected O(s).

• So try till get

• Then build collision-free quadratic tables inside

• Try till get

• Polynomial time in s, Las-vegas algorithm

• Easy: 6s cells

• Hard: s+ o(s) cells (bit fiddling)

Derandomization

• Probability 1/2 top-level function works

• Only m2 top-level functions

• Try them all!

• Polynomial in m, deterministic algorithm

Treaps

Dictionaries for ordered sets

• New Operations.

– enumerate in order

– successor-of, predecessor-of (even if not in set)

– join(S, k, T ), split, paste(S, T )

Binary tree.

• child and parent pointers

• endogenous: leaf nodes empty.

• balanced if depth O(log n)

• average case.

• worst case

3



Tree balancing

• rotations

• implementing operations.

• red/black, AVL

• splay trees.

– drawbacks in geometry:

– auxiliary structure on nodes in subtree

– rebuild on rotation

Returning to average case:

• Assign random “arrival orders” to keys

• Build tree as if arrived in that order

• Average case applies

• No rotations on searches

Choosing priorities

• define arrival by random priorities

• assume continuous distribution, fix.

• eg, use 2 log n bits, w.h.p. no collisions

Treaps.

• tree has keys in heap order of priorities

• unique tree given priorities—follows from insertion order

• implement insert/delete etc.

• rotations to maintain heap property

Depth d(x) analysis

• Tree is trace of a quicksort

• We proved O(log n) w.h.p.

• for x rank k, E[d(x)] = Hk +Hn−k+1 − 1

• S− = {y ∈ S | y ≤ x}

• Qx = ancestors of x

4



• Show E[Q−x ] = Hk.

• to show: y ∈ Q−x iff inserted before all z, y < z ≤ x.

• deduce: item j away has prob 1/j. Add.

• Suppose y ∈ Q−x .

– The inserted before x

– Suppose some z between inserted before y

– Then y in left subtree of z, x in right, so not ancestor

– Thus, y before every z

• Suppose y first

– then x follows y on all comparisons (no z splits

– So ends up in subtree of y

Rotation analysis

• Insert/Delete time

– define spines

– equal left spine of right sub plus right spine of left sub

– proof: when rotate up, on spine increments, other stays fixed.

• Rx length of right spine of left subtree

• E[Rx] = 1− 1/k if rank k

• To show: y ∈ Rx iff

– inserted after x

– all z, y < z < x, arrive after y.

– if z before y, then y goes left, so not on spine

• deduce: if r elts between, r! of (r + 2)! permutations work.

• So probability 1/r2.

• Expectation
∑

1/(1 · 2) + 1/(2 · 3) + · · · = 1− 1/k

• subtle: do analysis only on elements inserted in real-time before x, but now assume
they arrive in random order in virtual priorities.

5


