
Date midterm.

Treaps

Review:

• Dictionaries for ordered sets

• Binary tree.

• Tree balancing by rotations

• drawbacks in geometry: rebuild on rotation

Returning to average case:

• Assign random “arrival orders” to keys

• Build tree as if arrived in that order

• Average case applies

• No rotations on searches

Choosing priorities

• define arrival by random priorities

• assume continuous distribution, fix.

• eg, use 2 log n bits, w.h.p. no collisions

Treaps.

• tree has keys in heap order of priorities

• unique tree given priorities—follows from insertion order

• implement insert/delete etc.

• rotations to maintain heap property

Depth d(x) analysis

• Tree is trace of a quicksort

• We proved O(log n) w.h.p.

• for x rank k, E[d(x)] = Hk +Hn−k+1 − 1

• S− = {y ∈ S | y ≤ x}

• Qx = ancestors of x

1



• Show E[Q−x ] = Hk.

• to show: y ∈ Q−x iff inserted before all z, y < z ≤ x.

• deduce: item j away has prob 1/j. Add.

• Suppose y ∈ Q−x .

– The inserted before x

– Suppose some z between inserted before y

– Then y in left subtree of z, x in right, so not ancestor

– Thus, y before every z

• Suppose y first

– then x follows y on all comparisons (no z splits

– So ends up in subtree of y

Rotation analysis

• Insert/Delete time

– define spines

– equal left spine of right sub plus right spine of left sub

– proof: when rotate up, on spine increments, other stays fixed.

• Rx length of right spine of left subtree

• E[Rx] = 1− 1/k if rank k

• To show: y ∈ Rx iff

– inserted after x

– all z, y < z < x, arrive after y.

– if z before y, then y goes left, so not on spine

• deduce: if r elts between, r! of (r + 2)! permutations work.

• So probability 1/r2.

• Expectation
∑

1/(1 · 2) + 1/(2 · 3) + · · · = 1− 1/k

• subtle: do analysis only on elements inserted in real-time before x, but now assume
they arrive in random order in virtual priorities.

2



skip lists

• ruler intuition

• achieve with geometric variables

• backwards analysis of search path

• insert/delete time

Shortest Paths

classical shortest paths.

• dijkstra’s algorithm

• floyd’s algorithm. similarity to matrix multiplication

Matrices

• length 2 paths by squaring

• matrix multiplication. strassen.

• shortest paths by “funny multiplication.”

– huge integer implementation

– base-(n+ 1) integers

Boolean matrix multiplication

• easy.

• gives objects at distance 2.

• gives n-mul algorithm for problem

• what about recursive?

• well can get to within 2: let Tk be boolean “distance less than or equal to 2k. Squaring
gives Tk+1.

• what about exact?

Seidel’s distance algorithm.

• log-size integers:

– parities suffice:

∗ square G to get adjacency A′, distance D′

· if Dij even then Dij = 2D′ij

3



· if Dij odd then Dij = 2D′ij − 1

– For neighbors i, k,

∗ Dij − 1 ≤ Dkj ≤ Dij + 1

∗ exists k, Dkj = Dij − 1

– Parities

∗ If Dij even, then D′kj ≥ D′ij for every neighbor k

∗ If Dij odd, then D′kj ≤ D′ij for every neighbor k, and strict for at least one

– Add

∗ Dij even iff Sij =
∑

kD
′
kj ≥ Dijd(i)

∗ Dij odd iff
∑

kD
′
kj < Dijd(i)

∗ How determine? find S = AD′

To find paths: Witness product.

• easy case: unique witness

– multiply column c by c.

– read off witness identity

• reduction to easy case:

– suppose r columns have witness, where 2k ≤ r ≤ 2k+1

– choose each column with probability 2−k.

– prob. exactly one witness: r · 2−k(1− 2−k)r−1 ≥ (1/2)(1/e2)

Mod 3:

– Recall some neighbor distance down by one

– so compute distances mod 3.

– suppose Dij = 1 mod 3

– then look for k neighbor of i such that Dkj = 0 mod 3

– let D
(s)
ij = 1 iff Dij = s mod 3

– than AD(s) has ij = 1 iff a neighbor k of i has D
(s)
kj

– so, witness matrix mul!

4


