Randomized incremental construction
Special sampling idea:

e Sample all except one item

e hope final addition makes small or no change
Method:

e process items in order

e average case analysis

e randomize order to achieve average case

e e.g. binary tree for sorting
Backwards analysis

e compute expected time to insert S;_; — S;

e backwards: time to delete S; — S;_1

e conditions on .5;

e but generally analysis doesn’t care what S; is.

Convex Hulls

Define
e assume no 3 points on straight line.
e output:

— points and edges on hull
— in counterclockwise order

— can leave out edges by hacking implementation

Q(nlogn) lower bound via sorting
algorithm (RIC):

e random order p;
e insert one at a time (to get S;)
e update conv(S;_1) — conu(S;)

— new point stretches convex hull

— remove new non-hull points



— revise hull structure
Data structure:

e point py inside hull (how find?)

for each p, edge of conv(S;) hit by pop

e say p cuts this edge

To update p; in conv(S;_1):

— if p; inside, discard
— delete new non hull vertices and edges
— 2 vertices vy, vy of conv(S;_1) become p;-neighbors

— other vertices unchanged.

To implement:

— detect changes by moving out from edge cut by pgp.

— for each hull edge deleted, must update cut-pointers to p;0; or p;0y
Runtime analysis
e deletion cost of edges:

— charge to creation cost
— 2 edges created per step
— total work O(n)

e pointer update cost

— proportional to number of pointers crossing a deleted cut edge
— BACKWARDS analysis

* run backwards
* delete random point of S; (not conu(S;)) to get S;—;
x same number of pointers updated
% expected number O(n/7)
- what Prlupdate p|?
- Pr[delete cut edge of p]
- Pr[delete endpoint edge of p]
- 2/i
% deduce O(nlogn) runtime

e Book studies 3d convex hull using same idea, time O(nlogn), also gets voronoi diagram
and Delauney triangulations.



Trapezoidal decomposition:

Motivation:
e manipulate/analayze a collection of segments
e c.g. detect segment intersections
e c.g., point location data structure

— Draw verticals at all points
— binary search for slab
— binary search inside slab

— problem: O(n?) space

Definition.

e draw altitudes from each intersection till hit a segment.

e trapezoid graph is planar (no crossing edges)

e cach trapezoid is a face

e show a face.

e one face may have many vertices (from altitudes that hit the outside of the face)

e max vertex degree is 6 (assuming nondegeneracy)

e so total space O(n + k) for k intersections.

e number of faces also O(n + k) (each face needs one edge)

e (or use Euler’s theorem: n, —n. +ny > 2)

e standard clockwise pointer representation lets you walk around a face
Randomized incremental construction:

e to insert segment, start at left endpoint

e draw altitudes from left end (splits a trapezoid)

e traverse segment to right endpoint, adding altitudes whenever intersect

e traverse again, erasing (half of) altitudes cut by segment
Implementation

e clockwise ordering of neighbors allows traversal of a face in time proportional to number
of vertices



for each face, keep a (bidirectional) pointer to all not-yet-inserted left-endpoints in face

to insert line, start at face containing left endpoint

traverse face to see where leave it

create intersection,

— update face (new altitude splits in half)
— update left-end pointers

segment cuts some altititudes: destroy half

— removing altitude merges faces

— update left-end pointers
Analysis:
e Overall, update left-end-pointers in faces neighboring new line

e time to insert s is

> (n(f) + (1))

JFEF(s)

where

— F(s) is faces s bounds after insertion
— n(f) is number of vertices in face f
— ((f) is number of left-ends in f.

e So if S; is first ¢ segmenets inserted, expected work of insertion % is

S SRCERRITs)

s€S; feF(s)

e Note each f appears at most 4 times in sum

o 50 O(5 24(n(f) +€(f)))-

e Bound endpoint contribution:
— note Y_I(f)=n—1
— so contributes n/i

— so total O(nlogn)
e Bound intersection contribution

— > n(f) is O(k; + 1) if k; intersections



— so cost is Ek;]

— intersection present if both segments in first ¢ insertions
— so expected cost is O((i%/n?)k)

— so cost contribution (i/n?)k

— sum over i, get O(k)

— note: adding to RIC, assumption that first ¢ items are random.

e Total: O(nlogn + k)



