
Randomized incremental construction

Special sampling idea:

• Sample all except one item

• hope final addition makes small or no change

Method:

• process items in order

• average case analysis

• randomize order to achieve average case

• e.g. binary tree for sorting

Backwards analysis

• compute expected time to insert Si−1 → Si

• backwards: time to delete Si → Si−1

• conditions on Si

• but generally analysis doesn’t care what Si is.

Convex Hulls

Define

• assume no 3 points on straight line.

• output:

– points and edges on hull

– in counterclockwise order

– can leave out edges by hacking implementation

Ω(n log n) lower bound via sorting
algorithm (RIC):

• random order pi

• insert one at a time (to get Si)

• update conv(Si−1)→ conv(Si)

– new point stretches convex hull

– remove new non-hull points

1



– revise hull structure

Data structure:

• point p0 inside hull (how find?)

• for each p, edge of conv(Si) hit by ~p0p

• say p cuts this edge

• To update pi in conv(Si−1):

– if pi inside, discard

– delete new non hull vertices and edges

– 2 vertices v1, v2 of conv(Si−1) become pi-neighbors

– other vertices unchanged.

• To implement:

– detect changes by moving out from edge cut by ~p0p.

– for each hull edge deleted, must update cut-pointers to ~piv1 or ~piv2

Runtime analysis

• deletion cost of edges:

– charge to creation cost

– 2 edges created per step

– total work O(n)

• pointer update cost

– proportional to number of pointers crossing a deleted cut edge

– BACKWARDS analysis

∗ run backwards

∗ delete random point of Si (not conv(Si)) to get Si−1

∗ same number of pointers updated

∗ expected number O(n/i)

· what Pr[update p]?

· Pr[delete cut edge of p]

· Pr[delete endpoint edge of p]

· 2/i

∗ deduce O(n log n) runtime

• Book studies 3d convex hull using same idea, time O(n log n), also gets voronoi diagram
and Delauney triangulations.

2



Trapezoidal decomposition:

Motivation:

• manipulate/analayze a collection of segments

• e.g. detect segment intersections

• e.g., point location data structure

– Draw verticals at all points

– binary search for slab

– binary search inside slab

– problem: O(n2) space

Definition.

• draw altitudes from each intersection till hit a segment.

• trapezoid graph is planar (no crossing edges)

• each trapezoid is a face

• show a face.

• one face may have many vertices (from altitudes that hit the outside of the face)

• max vertex degree is 6 (assuming nondegeneracy)

• so total space O(n+ k) for k intersections.

• number of faces also O(n+ k) (each face needs one edge)

• (or use Euler’s theorem: nv − ne + nf ≥ 2)

• standard clockwise pointer representation lets you walk around a face

Randomized incremental construction:

• to insert segment, start at left endpoint

• draw altitudes from left end (splits a trapezoid)

• traverse segment to right endpoint, adding altitudes whenever intersect

• traverse again, erasing (half of) altitudes cut by segment

Implementation

• clockwise ordering of neighbors allows traversal of a face in time proportional to number
of vertices

3



• for each face, keep a (bidirectional) pointer to all not-yet-inserted left-endpoints in face

• to insert line, start at face containing left endpoint

• traverse face to see where leave it

• create intersection,

– update face (new altitude splits in half)

– update left-end pointers

• segment cuts some altititudes: destroy half

– removing altitude merges faces

– update left-end pointers

Analysis:

• Overall, update left-end-pointers in faces neighboring new line

• time to insert s is ∑
f∈F (s)

(n(f) + `(f))

where

– F (s) is faces s bounds after insertion

– n(f) is number of vertices in face f

– `(f) is number of left-ends in f .

• So if Si is first i segmenets inserted, expected work of insertion i is

1

i

∑
s∈Si

∑
f∈F (s)

(n(f) + `(f))

• Note each f appears at most 4 times in sum

• so O(1
i

∑
f (n(f) + `(f))).

• Bound endpoint contribution:

– note
∑
l(f) = n− i

– so contributes n/i

– so total O(n log n)

• Bound intersection contribution

–
∑
n(f) is O(ki + i) if ki intersections

4



– so cost is E[ki]

– intersection present if both segments in first i insertions

– so expected cost is O((i2/n2)k)

– so cost contribution (i/n2)k

– sum over i, get O(k)

– note: adding to RIC, assumption that first i items are random.

• Total: O(n log n+ k)

5


