Markov Chains for Sampling
Sampling:

e Given complex state space

e Want to sample from it

e Use some Markov Chain

e Run for a long time

e end up “near” stationary distribution

e Reduces sampling to local moves (easier)

e no need for global description of state space

e Allows sample from exponential state space
Formalize: what is “near” and “long time”?

e Stationary distribution m

e arbitrary distribution ¢

e relative pointwise distance (r.p.d.) max;|q¢; — 7;|/7;

e Intuitively close.

e Formally, suppose r.p.d. 9.

e Then (1 —-9)r <g¢q

e So can express distribution ¢ as “with probability 1 — §, sample from 7. Else, do
something wierd.

e So if 4 small, “as if” sampling from 7 each time.
e If ¢ poly small, can do poly samples without goof
e Gives “almost stationary” sample from Markov Chain

e Mixing Time: time to reduce r.p.d to some €



Volume
Outline:

e Describe problem. Membership oracle

e #P hard to volume intersection of half spaces in n dimensions
e In low dimensions, integral.

e even for convex bodies, can’t do better than (n/logn))™ ratio

e what about FPRAS?
Estimating 7:

e pick random in unit square

check if in circle

gives ratio of square to circle

Extends to arbitrary shape with “membership oracle”
e Problem: rare events.

e (ircle has good easy outer box
Problem: rare events:

e In 2d, long skinny shapes

e In high d, even round shape has exponentially larger bounding box
Solution: “creep up” on volume

e modify P to contain unit sphere By ri, contined in larger B, of radius r, r polynomial
e choose p near 1 —1/d.

e Consider sequence of bodies p'rP N By

e note for large i, get P

e but for 7 = 0, body contains B,

e 5o volume known

e 50 just need ratios

e At each step, need to random sample from p'rP N By

e Sample method: random walk forbidden to leave

e cigenvalues show rapid mixing

e cgienvalues small because body convex: no bottlenecks



Expander Walks

omitted
Another example and application: (n,d, ¢)-Expanders.

bipartite

n vertices, regular degree d

IP(S)| = (1 +¢(1 = 2[5]/n))|S]

factor ¢ more neighbors, at least until S near n/2.

Add self loops (with probability 1/2 to deal with periodicity.
What is stationary distribution? Uniform.

Intuition on convergence: because neighborhoods grow, position becomes unpredictable
very fast.

Theorem: )

Ao <1 c
270 d(2048 + 4¢?)
Converse theorem: if \y < 1 — ¢, get expander with

c>4(e — €

Gabber-Galil expanders:

Do expanders exist? Yes! proof: probabilistic method.
But in this case, can do better deterministically.

— Gabber Galil expanders.
— Let n = 2m?2. Vertices are (x,y) where z,y € Z,, (one set per side)
— 5 meighbors: (z,y), (v, +y), (z,z+y+1),(x +y,y),(x+y+1,y) (add mod m)

— or 7 neighbors of similar form.
Theorem: this d = 5 graph has ¢ = (2 — v/3) /4, degree 7 has twice the expansion.
in other words, ¢ and d are constant.
meaning Ay = 1 — € for some constant ¢

So random walks on this expander mix very fast: for polynomially small r.p.d., O(logn)
steps of random walk suffice.

Note also that n can be huge, since only need to store one vertex (O(logn) bits).

Application: conserving randomness.



Consider an BPP algorithm (gives right answer with probability 99/100 (constant
irrelevant) using n bits.

t independent trials with majority rule reduce failure probability to 27°® (chernoff),
but need tn bits

in case of RP, used 2-point sampling to get error O(1/t) with 2n bits and ¢ trials.

Use walk instead.

— vertices are N = 2" (n-bit) random strings for algorithm.

— edges as degree-7 expander

— only 1/100 of vertices are bad.

— what is probability majority of time spent there?

— in limit, spend 1/100 of time there

— how fast converge to limit? How long must we run?

— Power the markov chain so Ay < 1/10 (constant number of steps)

— use random seeds encountered every (3 steps.
e number of bits needed:

— O(n) for stationary starting point
— 3 more per trial,
e Theorem: after 7k samples, probability majority wrong is 1/2*. So error 1/2" with
O(n) bits!
— Let B be powered transition matrix
— let p® be distribution of sample 4, namely p° B’

— Let W be indicator matrix for good witnesses, namely 1 at diagonal ¢ if 7 is a
witness. W completmentary set I — W.

— |[p'W|; is probability p’ is witness set. similar for nonwitness.
— Consider a sequence of 7k results “witness or not”
— represent as matrices S = (Sy,...,Sy) € {W, W}

— claim

Pr[S] = [|p'” (BS1)(BSs) - -+ (BSm)|1.
(sums prob. of paths through correct sequence of witness/nonwitness)

— defer: [pBW |2 < [[pll2 and [[pBW > < lIp]l>



— deduce if more than 7k/2 bad witnesses,
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— At same time, only 27F bad sequences, so error prob. 27F5-7k/2 < 9=k
e proof of lemma:

— write p = > e

— obviously ||pBW/|| < ||[pW|| since W jiust zeros some stuff out.

— write p = 7 + y as before where y -7 =0

— argue that [|[x BW|| < ||=||/10 and yBW|| < ||y||/10, done.

— First 7

* recall 7B = 7 is uniform vector, all coords 1/v/N
% W has only 1/100 of coordintes nonzero, so
 [lesW|| = +/(N/100)(1/N) = 1/10
— Now y: just note ||[yB| < ||ly||/10 since Ay < 1/10. Then W zeros out.

— summary: 7 part unlikely to be in witness set, y part unlikely to be relevant.

Coupling:
Method
e Run two copies of Markov chain X;,Y;
e Each considered in isolation is a copy of MC (that is, both have MC distribution)

e but they are not independent: they make dependent choices at each step

in fact, after a while they are almost certainly the same

Start Y; in stationary distribution, X; anywhere

Coupling argument:

Pr[Xt = j] = Pr[Xt =7 | X = Yt] Pr[Xt = Yt] + Pr[Xt = ‘ Xy # Yt] Pr[Xt #* Yt]
= Pr[Yt :j] Pr[Xt = Yt} + ePr[Xt =3 ] X # Yt]

So just need to make e (which is r.p.d.) small enough.

n-bit Hypercube walk: at each step, flip random bit to random value



e At step t, pick a random bit b, random value v

e both chains set but b to value v

e after O(nlogn) steps, probably all bits matched.
Counting k colorings when k& > 2A + 1

e The reduction from (approximate) uniform generation

— compute ratio of coloring of G to coloring of G — e
— Recurse counting G — e colorings

— Base case k™ colorings of empty graph
e Bounding the ratio:

— note G — e colorings outnumber G colorings

— By how much? Let L colorings in difference (u and v same color)

— to make an L coloring a GG coloring, change u to one of K —A = A+ 1 legal colors
— Each G-coloring arises at most one way from this

— So each L coloring has at least A + 1 neighbors unique to them

— So Lis 1/(A + 1) fraction of G.

— So can estimate ratio with few samples
e The chain:

— Pick random vertex, random color, try to recolor
— loops, so aperiodic

— Chain is time-reversible, so uniform distribution.
e Coupling:

— choose random vertex v (same for both)

— based on X; and Y}, choose bijection of colors

— choose random color ¢

— apply ¢ to v in X, (if can), g(c) to v in Y; (if can).
— What bijection?

x Let A be vertices that agree in color, D that disagree.

if v € D, let g be identity

if v € A, let N be neighbors of v

let C'x be colors that N has in X but not Y (X can’t use them at v)
let Cy similar, wlog larger than C'x

* X X %



* ¢ should swap each C'y with some Cy, leave other colors fixed. Result:
X doesn’t change, Y doesn’t

e Convergence:

— Let d'(v) be number of neighbors of v in opposite set, so

Z d'(v) = Z d'(v) =m'

veA veD
— Let 0 = |D|
— Note at each step, o changes by 0, +1
— When does it increase?
x v must be in A, but move to D
happens if only one MC accepts new color
If ¢ not in Cx or Cy, then g(c) = ¢ and both change
If ¢ € Cx, then g(c) € Cy so neither moves
So must have ¢ € Cy
But |Cy| < d'(v), so probability this happens is
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— When does it decrease?
* must have v € D, only one moves
x sufficient that pick color not in either neighborhood of v,
* total neighborhood size 2A, but that counts the d’(v) elements of A twice.

* so Prob.
l E—(2A —d'(v)) B k—2A5+ﬁ’
n k  kn kn
vED
— Deduce that expected change in ¢ is difference of above, namely
k—2A
- 0 = —ad.
kn “

— So after ¢ steps, E[6;] < (1 —a)'dp < (1 —a)'n.
— Thus, probability § > 0 at most (1 — a)'n.

— But now note a > 1/n?, so n?logn steps reduce to one over polynomial chance.

Note: couple depends on state, but who cares

e From worm’s eye view, each chain is random walk

e 50, all arguments hold
Counting vs. generating:

e we showed that by generating, can count

e by counting, can generate:

if



