
Coupling:

Method

• Run two copies of Markov chain Xt, Yt

• Each considered in isolation is a copy of MC (that is, both have MC distribution)

• but they are not independent: they make dependent choices at each step

• in fact, after a while they are almost certainly the same

• Start Yt in stationary distribution, Xt anywhere

• Coupling argument:

Pr[Xt = j] = Pr[Xt = j | Xt = Yt] Pr[Xt = Yt] + Pr[Xt = j | Xt 6= Yt] Pr[Xt 6= Yt]

= Pr[Yt = j] Pr[Xt = Yt] + εPr[Xt = j | Xt 6= Yt]

So just need to make ε (which is r.p.d.) small enough.

n-bit Hypercube walk: at each step, flip random bit to random value

• At step t, pick a random bit b, random value v

• both chains set but b to value v

• after O(n log n) steps, probably all bits matched.

Counting k colorings when k > 2∆ + 1

• The reduction from (approximate) uniform generation

– compute ratio of coloring of G to coloring of G− e
– Recurse counting G− e colorings

– Base case kn colorings of empty graph

• Bounding the ratio:

– note G− e colorings outnumber G colorings

– By how much? Let L colorings in difference (u and v same color)

– to make an L coloring a G coloring, change u to one of k−∆ = ∆ + 1 legal colors

– Each G-coloring arises at most one way from this

– So each L coloring has at least ∆ + 1 neighbors unique to them

– So L is 1/(∆ + 1) fraction of G.

– So can estimate ratio with few samples

• The chain:

1

– Pick random vertex, random color, try to recolor

– loops, so aperiodic

– Chain is time-reversible, so uniform distribution.

• Coupling:

– choose random vertex v (same for both)

– based on Xt and Yt, choose bijection of colors

– choose random color c

– apply c to v in Xt (if can), g(c) to v in Yt (if can).

– What bijection?

∗ Let A be vertices that agree in color, D that disagree.

∗ if v ∈ D, let g be identity

∗ if v ∈ A, let N be neighbors of v

∗ let CX be colors that N has in X but not Y (X can’t use them at v)

∗ let CY similar, wlog larger than CX

∗ g should swap each CX with some CY , leave other colors fixed. Result: if
X doesn’t change, Y doesn’t

• Convergence:

– Let d′(v) be number of neighbors of v in opposite set, so∑
v∈A

d′(v) =
∑
v∈D

d′(v) = m′

– Let δ = |D|
– Note at each step, δ changes by 0,±1

– When does it increase?

∗ v must be in A, but move to D

∗ happens if only one MC accepts new color

∗ If c not in CX or CY , then g(c) = c and both change

∗ If c ∈ CX , then g(c) ∈ CY so neither moves

∗ So must have c ∈ CY
∗ But |CY | ≤ d′(v), so probability this happens is∑

v∈A

1

n
· d
′(v)

k
=
m′

kn

– When does it decrease?

∗ must have v ∈ D, only one moves

2

∗ sufficient that pick color not in either neighborhood of v,

∗ total neighborhood size 2∆, but that counts the d′(v) elements of A twice.

∗ so Prob. ∑
v∈D

1

n
· k − (2∆− d′(v))

k
=
k − 2∆

kn
δ +

m′

kn

– Deduce that expected change in δ is difference of above, namely

−k − 2∆

kn
δ = −aδ.

– So after t steps, E[δt] ≤ (1− a)tδ0 ≤ (1− a)tn.

– Thus, probability δ > 0 at most (1− a)tn.

– But now note a > 1/n2, so n2 log n steps reduce to one over polynomial chance.

Note: couple depends on state, but who cares

• From worm’s eye view, each chain is random walk

• so, all arguments hold

Counting vs. generating:

• we showed that by generating, can count

• by counting, can generate:

Parallel Algorithms

PRAM

• P processors, each with a RAM, local registers

• global memory of M locations

• each processor can in one step do a RAM op or read/write to one global memory
location

• synchronous parallel steps

• various conflict resolutions (CREW, EREW, CRCW)

• not realistic, but explores “degree of parallelism”

Randomization in parallel:

• load balancing

• symmetry breaking

• isolating solutions

3

Classes:

• NC: poly processor, polylog steps

• RNC: with randomization. polylog runtime, monte carlo

• ZNC: las vegas NC

• immune to choice of conflict resolution

Practical observations:

• very little can be done in o(log n) with poly processors

• lots can be done in Θ(log n)

• often concerned about work which is processors times time

• algorithm is “optimal” if work equals best sequential

Basic operations

• and, or

• counting ones

Sorting

Quicksort in parallel:

• n processors

• each takes one item, compares to splitter

• count number of predecessors less than splitter

• determines location of item in split

• total time O(log n)

• combine: O(log n) per layer with n processors

• problem: Ω(log2 n) time bound

• problem: n log2 n work

Parallel recursion:

• paradigm: reduce problem size from n to
√
n in O(log n) time.

• total time O(log n+ log
√
n+ · · ·) = O(log n)

More processors:

4

• n2 processors

• do all comparisons

• count number of items smaller than me: O(log n)

• put into place

• result: O(log n) time with n2 processors

• or, O(n) time with n processors

BoxSort:

• n processors

• Choose
√
n random splitters

• sort in O(log n) time

• insert items in splitters: O(log n) time

• solve each piece separately, recursively

Intuition:

• expected subproblem size O(
√
n)

• so expected time spent on a branch is O(log n) as above

• problem: many branches: need high probability result.

• solution: analyze each path, show O(log n) time whp

• thus max path is O(log n)

High probability:

• consider item x

• claim splitter within α
√
n on each side

• since prob. not at most (1− α
√
n/n)

√
n ≤ e−α

• fix γ, d < 1/γ

• define τk = dk

• define ρk = nγ
k

• note size ρk problem takes γk log n time

• argue at most dk size-ρk problems whp

5

• deduce runtime
∑
dkγk =

∑
(dγ)k log n = O(log n)

• note: as problem shrinks, allowing more divergence in quantity for whp result

• minor detail: “whp” dies for small problems

• OK: if problem size log n, finish in log n time with log n processors

6

