
Maximal independent set

trivial sequential algorithm

• inherently sequential

• from node point of view: each thinks can join MIS if others stay out

• randomization breaks this symmetry

Randomized idea

• each node joins with some probability

• all neighbors excluded

• many nodes join

• few phases needed

Algorithm:

• all degree 0 nodes join

• node v joins with probability 1/2d(v)

• if edge (u, v) has both ends marked, unmark lower degree vertex

• put all marked nodes in IS

• delete all neighbors

Intuition: d-regular graph

• vertex vanishes if it or neighbor gets chosen

• mark with probability 1/2d

• prob (no neighbor marked) is (1− 1/2d)d, constant

• so const prob. of neighbor of v marked—destroys v

• const fraction of neighbors vanish: O(log n) iters

• what about unmarking?

• prob(unmarking forced) only constant.

• So just changes constants

Implementing a phase trivial in O(log n).
Prob chosen for IS, given marked, exceeds 1/2

• suppose w marked. only unmarked if higher degree neighbor marked

1



• higher degree neighbor marked with prob. ≤ 1/2d(w)

• only d(w) neighbors

• prob. any marked at most 1/2.

• deduce prob. good vertex killed exceeds (1− e−1/6)/2

Good vertices

• good: at least 1/3 neighbors have lower degree

• prob. no neighbor of good marked ≤ (1− 1/2d(v))d(v)/3 ≤ e−1/6.

Good edges

• any edge with a good neighbor

• has const prob. to vanish

• show half edges good

• deduce O(log n) iterations.

Proof

• Let VB be bad vertices; we count edges with both ends in VB.

• direct edges from lower to higher degree di is indegree, do outdegree

• if v bad, then di(v) ≤ d(v)/3

• deduce ∑
VB

di(v) ≤ 1

3

∑
VB

d(v) =
1

3

∑
VB

(di(v) + do(v))

• so
∑

VB
di(v) ≤ 1

2

∑
VB
do(v)

• which means indegree can only “catch” half of outdegree; other half must go to good
vertices.

• more carefully,

– do(v)− di(v) ≥ 1
3
(d(v)) = 1

3
(do(v) + di(v)).

– Let VG, VB be good, bad vertices

– degree of bad vertices is

2e(VB, VB) + e(VB, VG) + e(VG, VB) =
∑
v∈VB

do(v) + di(v)

≤ 3
∑

(do(v)− di(v))

= 3(e(VB, VG)− e(VG, VB))

≤ 3(e(VB, VG) + e(VG, VB)

Deduce e(VB, VB) ≤ e(VB, VG) + e(VG, VB). result follows.

2



Derandomization:

• Analysis focuses on edges,

• so unsurprisingly, pairwise independence sufficient

• not immediately obvious, but again consider d-uniform case

• prob vertex marked 1/2d

• neighbors 1, . . . , d in increasing degree order

• Let Ei be event that i is marked.

• Let E ′i be Ei but no Ej for j < i

• Ai event no neighbor of i chosen

• Then prob eliminate v at least∑
Pr[E ′i ∩ Ai] =

∑
Pr[E ′i] Pr[Ai | E ′i]

≥
∑

Pr[E ′i] Pr[Ai]

• Wait: show Pr[Ai | E ′i] ≥ Pr[Ai]

– true if independent

– measure Pr[¬Ai | E ′i] ≤
∑

Pr[Ew | E ′i]
– measure

Pr[Ew | E ′i] =
Pr[Ew ∩ E ′]

Pr[E ′i]

=
Pr[Ew ∩ ¬E1 ∩ · · · | Ei]

Pr[¬E1 ∩ · · · | Ei]

≤ Pr[Ew | Ej]
1−

∑
Pr[Ej | Ei]

= Θ(Pr[Ei])

• But expected marked neighbors 1/2, so by Markov Pr[Ai] > 1/2

• so prob eliminate v exceeds
∑

Pr[E ′i] = Pr[∪Ei]

• lower bound as
∑

Pr[Ei]−
∑

Pr[Ei ∩ Ej] = 1/2− d(d− 1)/8d2 > 1/4

• so 1/2d prob. v marked but no neighbor marked, so v chosen

• Generate pairwise independent with O(log n) bits

• try all polynomial seeds in parallel

3



• one works

• gives deterministic NC algorithm

with care, O(m) processors and O(log n) time (randomized)
LFMIS P-complete.

Perfect Matching

We focus on bipartite; book does general case.
Detecting one easy in NC:

• Tutte matrix

• Determinant nonzero iff PM

• Replace vars with values 1, . . . , 2m, same holds

• Matrixu Mul, Determinant in NC

• Wait: big numbers?

• Who cares: poly bits, NC to multiply etc

How about finding one?

• If unique, no problem

• Remove each edge, see if still PM in parallel

• multiplies processors by m

• still NC

• generalizes to polynomial number of matchings

Idea:

• make unique minimum weight perfect matching

• find it

Isolating lemma:

• Family of distinct sets over x1, . . . , xm

• assign random weights in 1, . . . , 2m

• Pr(unique min-weight set)≥ 1/2

• Odd: no dependence on number of sets!

• (of course < 2m)

4



Proof:

• Fix item xi

• Y is min-sets containing xi

• N is min-sets no containing xi

• true min-sets are either those in Y or in N

• how decide? Value of xi

• For xi = −∞, min-sets are Y

• For xi = +∞, min-sets are N

• As increase from −∞ to∞, single transition value when both X and Y are min-weight

• If only Y min-weight, then xi in every min-set

• If only X min-weight, then xi in no min-set

• If both min-weight, xi is ambiguous

• Suppose no xi ambiguous. Then min-weight set unique!

• Exactly one value for xi makes it ambiguous given remainder

• So pr(ambiguous)1/2m

• So pr(any ambiguous)< m/2m = 1/2

Usage:

• Consider tutte matrix A

• Assign random value 2wi to xi, with wi ∈ 1, . . . , 2m

• Weight of matching is 2
∑
wi

• Let W be minimum sum

• Unique w/pr 1/2

• If so, determinant is odd multiple of 2W

• Try removing edges one at a time

• Edge in PM iff new determinant/2W is odd.

NC algorithm open.
For exact matching, P algorithm open.

5



Upcoming

Vempala: “An Eye for Elegance”

• More markov chains

• convex volume estimation

• geometric embeddings

• 11-12:30

Joel Spencer

• 9:30-11

• Probabilstic method

• List of people who took it last time

Spielman advanced complexity
Next year: advanced algorithms.
Bring your research problems

6


