
Admin

Discuss collaboration.
Discuss median finding.

Median finding.

change from book. List L

• idea; random sampling

• median of sample looks like median of whole. neighborhood.

• Algorithm

– choose s samples with replacement

– take fences before and after sample median

– keep items between fences. sort.

• Analysis

– claim (i) median within fences and (ii) few items between fences.

– Without loss of generality, L contains 1, . . . , n.

– Samples s1, . . . , sm in sorted order.

– lemma: Sr near rn/s.

∗ Chernoff: ∀k, number elements before k is (1±ε)ks/n, where ε =
√

(6n lnn)/ks.

∗ Thus, when k > n/4, error ks/n(1±
√

24 lnn/s) = ks/n(1± ε).
∗ S(1+ε)ks/n > k

∗ Sr > rn/s(1 + ε)

∗ Sr < rn/s(1− ε).
– Let r0 = s

2
(1− ε)

– Then w.h.p., n
2
(1− ε)/(1 + ε) < Sr0 < n/2

– Let r1 = s
2
(1− ε)

– Then Sr1 > n/2

– But Sr1 − Sr0 = O(εn)

• Number of elements to sort: s

• Set containing median: O(εn) = O(n
√

(log n)/s).

• balance: Õ(n2/3) in both steps.

Randomized is strictly better:

• Optimum deterministic: ≥ (2 + ε)n

• Optimum randomized: ≤ (3/2)n+ o(n)

1

Routing

• synchronous message passing

• bidirectional links, one message per step

• queues on links

• permutation routing

• oblivious algorithms only consider self packet.

• Theorem Any deterministic oblivious permutation routing requires Ω(
√
N/d) steps

on an N node degree d machine.

– reason: some edge has lots of paths through it.

– homework: special case

• Hypercube.

– N nodes, n = log2 N dimensions

– bit representation

– natural routing: bit fixing (left to right)

– paths of length n

– Nn edges for N length n paths

– lower bound n

• Routing algorithms:

– O(n) = O(logN) randomized

– beats Ω(
√
N/n) deterministic

– how? load balance paths.

• Random destination (not permutation!), bit correction

– Average case, but a good start.

– T (ei) = number of paths using ei

– by symmetry, all E[T (ei)] equal

– expected path length n/2

– LOE: expected total path length Nn/2

– nN edges in hypercube

– E[T (ei)] = 1/2

– Chernoff: every edge gets ≤ 3n (prob 1− 1/N)

• Naive usage:

2

– n phases, one per bit

– 3n time per phase

– O(n2) total

– From intermediate destination, route back!

– routes worst case permutation in O(n2).

• What if don’t wait for next phase?

– FIFO queuing

– total time is length plus delay

– Expected delay ≤ E[
∑
T (el)] = n/2.

– Chernoff bound? no. dependence of T (ei).

• High prob. bound:

– consider paths sharing route (e0, . . . , ek)

– Suppose S packets intersect route (use at least one of ei)

– claim delay ≤ |S|
– Suppose true: Let Hij = 1 if j hits i’s (fixed) route.

E[|S|] = E[
∑

Hij]

≤ E[
∑

T (el)]

≤ n/2

– Now Chernoff does apply (Hij independent for fixed i-route).

– |S| = O(n) w.p. 1− 2−5n, so O(n) delay for all 2n paths.

• Lag argument

– Exercise: once packets separate, don’t rejoin

– Route for i ρi = (e1, . . . , ek)

– charge each delay to a departure of a packet from ρi.

– Packet waiting to follow ej at time t has: Lag t− j
– Delay of vi is lag crossing ek

– When vi delay rises to l+1, some packet from S has lag l (since crosses ej instead
of vi).

– Consider last time t′ where a lag-l packet exists

∗ some lag-l packet w crosses ej′ at t′ (others increase to lag-(l + 1))

∗ w leaves at this point (if not, then l at ej′+1 next time)

∗ charge one delay to w.

3

