
The Probabilistic Method

Idea: to show an object with certain properties exists

• generate a random object

• prove it has properties with nonzero probability

• often, “certain properties” means “good solution to our problem”

Max-Cut:

• Define

• NP-complete

• Approximation algorithms

• factor 2

• “expected performance,” so doesn’t really fit our RP/ZPP framework

Expanders

Existence vs. constriction

• Of course, many probabilistic method constructions yield constructive algorithms

• In maxcut, just try till succeed

• Other times, are only existential proofs, or very bad algorithms

• But motivate search for good algorithm

Definition: (n, d, α, c) OR-concentrator

• bipartite 2n vertices

• degree at most d in L

• expansion c on sets < αn.

Applications:

• switching/routing

• ECCs

claim: (n, 18, 1/3, 2)-concentrator

• Construct by sampling d random neighbors with replacement

– Es: Specific size s set has < cs neighbors.
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– fix S of size s. T of size < cs.

– prob. S goes to T at most (cs/n)ds

–
(
n
cs

)
sets T

–
(
n
s

)
sets S

–

Pr[] ≤
(
n

s

)(
n

cs

)
(cs/n)ds

≤ (en/s)s(en/cs)cs(cs/n)ds

= [(s/n)d−c−1ec+1cd−c]s

≤ [(1/3)d−c−1ec+1cd−c]s

≤ [(c/3)d(3e)c+1]s

– Take c = 2, d = 18, get [(2/3)18(3e)3]<2−s

– sum over s, get < 1

Existence proof

• No known construction this good.

• NP -hard to verify

• but some constructions almost this good

Wiring

Sometimes, it’s hard to get hands on a good probability distribution.

• Problem formulation

–
√
n×
√
n gate array

– Manhattan wiring

– boundaries between gates

– fixed width boundary means limit on number of crossing wires

– optimization vs. feasibility: minimize max crossing number

– focus on single-bend wiring. two choices for route.

– Generalizes if you know about max-flow

• Linear Programs, integer linear programs

– Black box

– Good to know, since great solvers exist in practice
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– Solution techniques in other courses

• IP formulation

– xi0 means xi starts horizontal, xi1 vertical

– Tb0 = {i | net i through b if xi0}
– Tb1

– IP

min w

xi0 + xi1 = 1∑
i∈Tb0

xi0 +
∑
i∈Tb1

xi1 ≤ w

• Solution x̂i0, x̂i1, value ŵ.

• rounding is Poisson vars, mean ŵ.

• Pr[≥ (1 + δ)ŵ] ≤ e−δ
2ŵ/4

• need 2n boundaries, so aim for prob. bound 1/2n2.

• solve, δ =
√

(4 ln 2n2)/ŵ.

• So absolute error
√

8ŵ lnn

– Good (o(1)-error) if ŵ � 8 lnn

– Bad (O(lnn) error) is ŵ = 2

– General rule: randomized rounding good if target logarithmic, not if constant

MAX SAT

Define.

• literals

• clauses

• NP-complete

random set

• achieve 1− 2−k

• very nice for large k, but only 1/2 for k = 1
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LP

max
∑

zj∑
i∈C+

j

yi +
∑
i∈C−j

(1− y1) ≥ zj

Analysis

• βk = 1− (1− 1/k)k. values 1, 3/4, .704, . . .

• Lemma: k-literal clause sat w/pr at least βkẑj.

• proof:

– assume all positive literals.

– prob 1−∏(1− yi)
–

– maximize when all yi = ẑj/k.

– Show 1− (1− ẑ/k)k ≥ βkẑk.

– check at z = 0, 1

• Result: (1− 1/e) approximation (convergence of (1− 1/k)k)

• much better for small k: i.e. 1-approx for k = 1

LP good for small clauses, random for large.

• Better: try both methods.

• n1, n2 number in both methods

• Show (n1 + n2)/2 ≥ (3/4)
∑
ẑj

• n1 ≥
∑
Cj∈Sk(1− 2−k)ẑj

• n2 ≥
∑
βkẑj

• n1 + n2 ≥
∑

(1− 2−k + βk)ẑj ≥
∑ 3

2
ẑj
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