
Admin

Next tuesday: holiday.

• pset due thursday

• but material done TODAY (almost)

• so start/finish early, have fun on vacation

• New pset POSTED tuesday, distributed thursday

Method of Conditional Probabilities and Expectations

Derandomization.

• Theory: is P=RP?

• practice: avoid chance of error, chance of slow.

Conditional Expectation. Max-Cut

• Imagine placing one vertex at a time.

• xi = 0 or 1 for left or right side

• E[C] = (1/2)E[C|x1 = 0] + (1/2)E[C|x1 = 1]

• Thus, either E[C|x1 = 0] or E[C|X1 = 1] ≥ E[C]

• Pick that one, continue

• More general, whole tree of element settings.

– Let C(a) = E[C | a].

– For node a with children b, c, C(b) or C(c) ≥ C(a).

• By induction, get to leaf with expected value at least E[C]

• But no randomness left, so that is actual cut value.

• Problem: how compute node values? Easy.

Conditional Probabilities. Set balancing. (works for wires too)

• Review set-balancing Chernoff bound

• Think of setting item at a time

• Let Q be bad event (unbalanced set)

• We know Pr[Q] < 1/n.

1

• Pr[Q] = 1/2 Pr[Q | xi0] + 1/2 Pr[Q | xi1]

• Follows that one of conditional probs. less than Pr[Q] < 1/n.

• More general, whole tree of element settings.

– Let P (a) = Pr[Q | a].

– For node a with children b, c, P (b) or P (c) < P (a).

– P (r) < 1 sufficient at root r.

– at leaf l, P (l) = 0 or 1.

• One big problem: need to compute these probabilities!

Pessimistic Estimators.

• Alternative to computing probabilities

• three neceessary conditions:

– P̂ (r) < 1

– min{P̂ (b), P̂ (c)} < P̂ (a)

– P̂ computable

Imply can use P̂ instead of actual.

• Let Qi = Pr[unbalanced set i]

• Let P̂ (a) =
∑

Pr[Qb | a] at tree node a

• Claim 3 conditions.

– HW

• Result: deterministic O(
√
n lnn) bias.

• more sophisticated pessimistic estimator for wiring.

Oblivious routing

• recall: choose random routing. Only 1/N chance of failure

• Choose N3 random routines.

• whp, for every permutation, at most 2N2 bad routes.

• given the N3 routes, pick one at random.

• so for any permutation, prob 2/N of being bad.

2

Fingerprinting

Basic idea: compare two things from a big universe U

• generally takes logU , could be huge.

• Better: randomly map U to smaller V , compare elements of V .

• Probability(same)= 1/|V |

• intuition: log V bits to compare, error prob. 1/|V |

We work with fields

• add, subtract, mult, divide

• 0 and 1 elements

• eg reals, rats, (not ints)

• talk about Zp

• which field often won’t matter.

Verifying matrix multiplications:

• Claim AB = C

• check by mul: n3, or n2.376 with deep math

• Freivald’s O(n2).

• Good to apply at end of complex algorithm (check answer)

Freivald’s technique:

• choose random r ∈ {0, 1}n

• check ABr = Cr

• time O(n2)

• if AB = C, fine.

• What if AB 6= C?

– trouble if (AB − C)r = 0 but D = AB − C 6= 0

– find some nonzero row (d1, . . . , dn)

– wlog d1 6= 0

– trouble if
∑
diri = 0

– ie r1 = (
∑
i>1 diri)/d1

3

– principle of deferred decisions: choose all i ≥ 2 first

– then have exactly one error value for r1

– prob. pick it is at most 1/2

How improve detection prob?

– k trials makes 1/2k failure.

– Or choosing r ∈ [1, s] makes 1/s.

• Doesn’t just do matrix mul.

– check any matrix identity claim

– useful when matrices are “implicit” (e.g. AB)

• We are mapping matrices (n2 entries) to vectors (n entries).

String matching

Checksums:

• Alice and Bob have bit strings of length n

• Think of n bit integers a, b

• take a prime number p, compare a mod p and b mod p with log p bits.

• trouble if a = b (mod p). How avoid? How likely?

– c = a− b is n-bit integer.

– so at most n prime factors.

– How many prime factors less than k? Θ(k/ ln k)

– so take 2n2 log n limit

– number of primes about n2

– So on random one, 1/n error prob.

– O(log n) bits to send.

– implement by add/sub, no mul or div!

How find prime?

– Well, a randomly chosen number is prime with prob. 1/ lnn,

– so just try a few.

– How know its prime? Simple randomized test (later)

Pattern matching in strings

4

• m-bit pattern

• n-bit string

• work mod prime p of size at most t

• prob. error at particular point most m/(t/ log t)

• so pick big t, union bound

• implement by add/sub, no mul or div!

5

