Algorithms Professor John Reif

ALG 4.2 Universal Hash Functions:

CLR - Chapter 34

Auxillary Reading Selections:

AHU-Data Section 4.7

BB Section 8.4.4

Handout: Carter & Wegman, "Universal Classes of Hash Functions", JCSS, Vol. 18, pp. 143-154, 1979.

f has *conflict* at x,y ε A if $x\neq y$ but f(x) = f(y)

$$\sigma_{f}(x,y) = \begin{cases} 1 & \text{if } x \neq y \text{ and } f(x) = f(y) \\ 0 & \text{else} \end{cases}$$

2

If H is a set of hash functions,

$$\sigma_{H}(x,y) = \sum_{f \in H} \sigma_{f}(x,y)$$

for set of keys S,

$$\sigma_{H}(x,S) = \sum_{f \in H} \sum_{y \in S} \sigma_{f}(x,y)$$

3

H is a universal 2 set of hash functions

if
$$\sigma_{H}(x,y) \leq \frac{|H|}{|B|}$$
 for all $x,y \in A$

i.e. no pair of keys x,y are mapped into the same index by $> \frac{1}{|B|}$ of all functions in H

Proposition 1

Given any set H of hash fn, $\exists x,y \in A \text{ s.t.}$

$$\sigma_{H}(x,y) > |H| \left(\frac{1}{|B|} - \frac{1}{|A|}\right)$$

proof

let
$$a = |A|, b = |B|$$

By counting, we can show

$$\sigma_f(A,A) \ge b(\frac{a}{b}-1)^2 \ge \frac{a^2}{b}-a$$

5

Thus
$$\sigma_{H}(A,A) \ge a^{2} |H| \left(\frac{1}{b} - \frac{1}{a}\right)$$

By the pidgeon hole principle

$$\exists x,y \in A \text{ s.t}$$

$$\sigma_{H}(x,y) \geq |H| \left(\frac{1}{b} - \frac{1}{a}\right)$$

note in most applications, |A| >> |B| and then any universal $_2$ class has asymptotically a minimum number of conflicts

Proposition 2: Let $x \in A$, $S \subseteq A$

For f chosen randomly from a universal 2 class H of hash functions, the expected number of colisions is

$$\sigma_{f}(x,S) \leq \frac{|S|}{|B|}$$

$$\begin{split} & \underbrace{Proof}_{E(\sigma_{f}^{-}(x,S))} = \frac{1}{|H|} \sum_{f \in H} \sigma_{f}^{-}(x,S) \\ & = \frac{1}{|H|} \sum_{y \in S} \sigma_{H}^{-}(x,y) \text{ by definition} \\ & \leq \frac{1}{|H|} \sum_{y \in S} \frac{|H|}{|B|} \text{ by definition of universal}_{2} \\ & = \frac{|S|}{|B|} \end{split}$$

application

associative memory storage of |S| keys onto |B| linked lists.

Given key $x \in A$, store x in list f(x)Proposition 2 implies each list has expected

length
$$\leq \frac{|S|}{|B|} = 0(1)$$
 if $|B| \geq |S|$

Gives 0(1) time for STORE, RETRIEVE, and DELETE operations

Proposition 3

Let R be a sequence of requests with k insertion operations into an associative memory.

If f is chosen at random from set of $\frac{1}{2}$ universal $\frac{1}{2}$ class H, the expected

total cost of all k searches is

$$\leq |R| (1 + \frac{k}{|B|}).$$

proof

There are |R| total search ops, and each takes by Proposition 2 expected

time
$$\leq 1 + \frac{k}{|B|}$$

note

if $|B| \ge k$, then expected total time is O(|R|).

Bounds on distribution of $\sigma_f(x,S)$

Proposition 4 Let $x \in A$, $S \subset A$

Let μ = expected value of σ_f (x,S) For f chosen randomly from universal 2 set of functions H,

Prob
$$(\sigma_f(x,S) > t \cdot \mu) < \frac{1}{t}$$

proof

immediate from Markov bound

improved bounds on probability:

prob
$$\leq \frac{11}{t^4}$$
 for universal hash fns. H₂, H₃

(using 2nd and 4th moments of prob. distribution.)

H = universal₂ set of hash functions.

E₁= Expected cost of *random* set of k requests using a *worst case* function f in H (random input)

E₂= Expected cost of *worst case* set of k requests using a *random* function f in H (randomized algorithm)

Prop 5
$$E_1 \ge (1-\epsilon) E_2$$
 where $\epsilon = \frac{|B|}{|A|}$

proof

Let
$$a = |A|, b = |B|.$$

Prop 2 implies $E_2 \le 1 + \frac{|S|}{b}$

Suppose S is chosen randomly. for x, y ϵ S,

$$E(\sigma_f(x,y)) = \frac{1}{\frac{1}{a}} \sigma_f(A,A)$$

$$\ge \frac{1}{\frac{1}{a}} \left[a^2 \left(\frac{1}{b} \cdot \frac{1}{a} \right) \right] \text{ by Prop 1}$$

$$\ge \left(\frac{1}{b} \cdot \frac{1}{a} \right)$$

So $E_1 \ge 1 + E(\sigma_f(x,S))$

$$\ge 1 + |S| \left(\frac{1}{b} \cdot \frac{1}{a} \right)$$

Example of Universal 2 Class

```
Set of Keys Table

Let A = \{0,1, ..., a-1\} Set of Keys
B = \{0,1, ..., b-1\} Table

Let p be a prime \geq a

\mathbf{Zp} = \{0,1, ..., p-1\} = \text{number field mod p}

define \quad \mathbf{g} : \mathbf{Z_p} \to \mathbf{B} \quad \text{s.t.}
\mathbf{g}(\mathbf{x}) = \mathbf{x} \mod \mathbf{b}

define \quad \text{for n,m} \in \mathbf{Z_p} \quad \text{with m} \neq \mathbf{0},
\mathbf{h_{n,m}} \colon \mathbf{A} \to \mathbf{Z_p} \quad \text{with } \mathbf{h_{n,m}} (\mathbf{x}) = (\mathbf{mx} + \mathbf{n}) \mod \mathbf{p}

define \quad \mathbf{f_{n,m}} \colon \mathbf{A} \to \mathbf{B} \quad \text{s.t.} \quad \mathbf{f_{n,m}} (\mathbf{x}) = \mathbf{g}(\mathbf{h_{m,n}} (\mathbf{x}))

H_I = \{f_{m,n} \mid m, n \in \mathbf{Z_p}, m \neq \mathbf{0}\}

Claim: \quad \mathbf{H_1} \text{ is universal }_2
```

Lemma

for distinct x, y EA,

$$\sigma_{H_1}(x,y) = \sigma_g(Z_p, Z_p)$$

proof

Observe that the linear equations:

$$xm + n = r \pmod{p}$$

$$ym + n = s \pmod{p}$$

have unique solutions in Z p

So
$$(r,s) = (h_{m,n}(x), h_{m,n}(y))$$
 then
$$(f_{m,n}(x) = f_{m,n}(y) \text{ if and only if } g(r) = g(s))$$

 $\sigma_{H}(x,y)$ is the number of such pairs in

$$(r,s) \in \sigma_g (Z_p, Z_p)$$

Theorem

 H_1 is universal 2

proof

Let
$$\mathbf{n}_{i} = |\{\mathbf{t} \ \mathbf{\epsilon} \ \mathbf{Z}_{p} \ | \ \mathbf{g}(\mathbf{t}) = \mathbf{i}\}|$$

By definition of $g(x) = x \mod b$,

$$\Rightarrow$$
 $n_i \leq \frac{p-1}{b} + 1$

For any given r, the number of s

where $s \neq r$ and g(r) = g(s) is

$$\sigma_{g}(r, Z_{p}) \leq \frac{p-1}{b}$$

But there are p choices of r,

so
$$p \cdot \left(\frac{(p-1)}{b}\right) \ge \sigma_g (Z_p, Z_p)$$

= $\sigma_{H_1}(x,y)$ by Lemma

(Also note $\sigma_{H}(x,x) = 0$)

Hence
$$\sigma_{H_1}(x,y) \le \frac{|H_1|}{b}$$
 since $|H_1| = p(p-1)$
so H_1 is universal 2

Universal Hash Fns on Long keys Given class of hash functions H, define hash functions $J = \{h_{f,g} \mid f,g \in H\}$

where
$$\mathbf{h}_{\mathbf{f},\mathbf{g}}$$
 $(\mathbf{x}_1$, $\mathbf{x}_2) = \mathbf{f}(\mathbf{x}_1) \bigoplus_{\uparrow} \mathbf{g}(\mathbf{x}_2)$
exclusive or

Theorem Suppose $B = \{0,1,\ldots,b=1\}$ where b is a power of 2. Suppose this class of fns $A \to B$

$$\exists \operatorname{real} r \forall i \in B \forall x_1, y_1 \in A, x_1 \neq y_1$$
$$\Rightarrow |\{f \in H \mid f(x_1) \oplus f(y_1) = i\}| \leq r|H|$$

Then
$$\forall x, y \in (A \times A), x \neq y$$

 $|\{h \in J \mid h(x) \oplus h(y) = i\}| \leq r|H|$

Proof for
$$x = (x_1, x_2)$$
, $y = (y_1, y_2)$ in $A \times A$

$$i\mathcal{E}B$$
 then $\{h\mathcal{E}J \mid h(x) \oplus h(y) = i\}$

$$= \left| \left\{ f, g \in H \mid f(x_1) \oplus g(x_2) \oplus f(y_1) \oplus g(y_2) = i \right\} \right|$$

$$= \sum_{y \in H} |\{f \in H \mid f(x_1) \oplus f(y_1) = i \oplus g(x_2) \oplus g(y_2)\}|$$

$$\leq \left| \left\{ f \in H \mid f(x_1) \oplus f(y_1) = i \right\} \right| \leq r|H|$$

example
$$H_1$$
 with $m=0$ gives J with $r=rac{1}{|B|}$ universal!

Universal 2 Hashing with out Multiplication $A = set \ of \ d \ digit \ numbers \ base \ \alpha \ so, \ |A| = \alpha^d$ $B = set \ of \ binary \ numbers \ length \ j$ $M = arrays \ of \ length \ d \cdot \alpha,$ with elements in B

 \forall m ϵ M let m(k) = kth element of array m

 $\forall x \in A$ let $x_k = kth \text{ digit of } x \text{ base } \alpha$

definition $f_m(x) = m(x_1+1) \oplus m(x_1+x_2+2) \oplus \dots \oplus m \left(\sum_{k=1}^d x_k+k\right)$

Theorem

 $\mathbf{H}_2 = \{ \mathbf{f}_m | \mathbf{m} \in \mathbf{M} \} \text{ is universal } 2$

But there are only |B| possibilities for row r_k so x,y will collide for $\frac{1}{|B|}$ of fns $f_m \in H_2$

Hence H₂ is universal₂

Analysis of Hashing

for Uniform Random Hash fn

$$load factor \alpha = \frac{\text{# of keys hashed}}{\text{# of indicies in Hash Table}}$$

Hashing with Chaining

keep list of conflicts at each index

length is *binomial* variable

expected length = α

Expected Time Cost per hash = $o(1+\alpha)$

By Chernoff Bounds, with high likelyhood time cost per hash $\leq O(\alpha \log(\# \text{keys}))$

Open Address Hashing (With Uniform Random Hash fn)

Resolve conflicts by applying another hash function

 α = load factor = prob. of occupied hash address

rehashes as geometric variable

expected hash time = $\frac{1}{1-\alpha}$ = $1+\alpha+\alpha^2+...$