Algorithms
Professor John Reif

ALG 4.3

Hashing Polynomials
and
Algebraic Expressions:

(a) Identity Testing of Polynomials
(b) Applications of Polynomial Hashing

(¢) Hashing Classes of Algebraic
Expressions

Reading Selection:

Handout: Ibarra & Moran, "Probabilistic

Algorithms for Deciding Equavalence of
Straight-Line Programs", JACM, Vol. 30,
No. 1, pp. 217-228, Jan. 1983.

Main Goal of Lecture:

Develop techniques for testing
equality of Expressions

= ‘)
test € =€,°

by using test

— 9
hash (81) =hash (82) :

Goals:

(1) provable bounds on error
probability
(2) applicable to largest
possible class of
expressions




Definitions:

polynomial expression:
I or any variable, or integer, or
o+Boa—-PB,a-B,or aTx where

o, B arepolynomial expressions and
Kisa positiveinteger.

Straight LineProgram IT: I nput XpeesXn

sequence assignments--

r

X <% 0, X

length (0) | %nez € Xi2 %, ij

assignments |

output x, where L =length (II).
allow operations 0, € {+, — -,T}

H(xl,. . .,xn) denotes output value.




(1)

(2)

Notes:
Given a polynomial expression O,
can construct a straight-line
program of size linear in input
polynomial O,
A straight-line program

rl(xl,...,xn)
will yield a polynomial expression

%n with integer coefficients where

1 h
degree (o) <2 ength(m)

If H(x ""’Xn) is a program over Q,

1

2length(I1)

H(x beor s X )SZ can be
1 n

proved by induction on length (II).
basis: true for case length (J] )=0

induction step: if true for
length (J] )<k—1and

(x5 %x )=
T %8 T 2% %),

then TT(x...%) < 2ol
Q.E.D.




Let Q be an infinite field.
Let P (x,,...,X,) be nonzero polynomial

degree d.
Lemma If A<Q sizex=|A>d,then

3 at leastx —d," elementae A"
st. P@ #0.

Proof: By induction on n
Basis: If n=1, then P has < d roots

in Q.

Induction: Suppose lemma holds
for polynomials with less than n
variables. Since P nonzero,

El(al,...,an_l,c) S.t. P(al,...,an_l,c) #0.
So by induction hypothesis 3 at least
(1c—d)n_1 such (q,...,%_l)eA”—l st.
P(al,..., an_l,c);t(). But the P{(xn)z
P(al,..., a xn) is nonzero polynomial

with at least x—d elementsin A st.
P’((xn);to. Lemma follows: Q.E.D.




This is the key Lemma used to justify
hashing polynomials!

| f P(xl...xn) degreed in Q,
Theorem: |If K=W22dn, and aisa
random element of A", then
Prob(P(a)#0)>}

Proof :

a:ae A", P(a) 0]

Prob(P(a)#0)= {

A
n
=(K;r(,j) by Lemma
~(1-4

Lemma 2:

If K is an integer st. 1< Kk<2*"?"
and mis randomly chosen from {1,...,2°"},
then Prob(x#0modm)=L for n>>0.

Proof:
By the prime number theorem,

the number of primes less than 2*"
. 22n
is at least An for large n.

But x has at most 2n2" prime divisors.

Hence, Prob(x#0modm)
(# primes <2*") which don@ divide x

22n
22" 2n=2n2" _ 1
> ! > .E.D.
p il 4n Q




Algorithm: Randomized Zero Testing

Input: program m(X,,...,X,) length r

beqgin
nN=r +t

A={1,2,...,2t2"}
for 1=1,...,8n, do
begin
choose random ae A'

choose random mefl,...,2*"}

if m(a)#0modm,

then return " w#0"
end
return " w=0"
end

Theorem: Prob(correct output)>1

N\

Proof : If m=0, then algorithm always
correct.

Suppose t#0. By Lemmal,

Prob(m(a)#0)>}. Also, if m(a)=0, then

N\»—\

Prob( (a )¢0m0dm)24l

Prob(n(a)z0modm)>1-(L)=¢. Hence,

Prob(correct output) 21—(1—81n)8n
>1-¢e1
>1 Q.E.D




Applications of Polynomial Zero Testing

(I Givenn xn matrices A, B, C
problem A -B=Q

(2) Givenn degree Polynomials
P, (%), P (%), P (%)
problent Pl(x)- PZ(X)=P3(X)?

(3) Givenn bitintegers Xy X,y X

problem x1 . x2 =x3?

3

(4) Givenn xn Matrix A,integerr
problemr rank(A) =r?

(5 GivengraphGofn vertices

problem does Ghave perfect
matching?

(6) Authentication systems

(7) Testing equality of sets with
element addition and deletion
operations

Given:

non integer matrices A,B,C

Theorem:

Can test A-B=C?
in time O(n’logn)

1
with success probability Zl—nc,

for a constant C.




Proof:

Let K=clogn.
Choose k random vectors X,,...,X,

each of size n, from elements in {—1,1}

1f i ef{l,...,k} st. A(BX,)#(CX)
then output "A-B#C"
else output "A-B=C"

Note: if A-B=C, then no errors ever!
Else: if A-B#C, Vie{l,...,k}
Prob(A-(B-X) # CX)
=Prob(Dx, #0) where D=A-B—C#0
>1 since at most 2" out of 2"
vectors X have D-X=0 if D#0.

So, Prob(A-(B-%;)#Cx forie{l,...,k})
>1-2"%=1-n"

Given Polynomials: P, (X)- B, (X), P;(X) degree n.

Theorem: Can test P,(X)- P, (X) = P;(X)? in

expected 0(n) arithmetic steps.

Proof: Fix error prob. € € (0,;).

Let

k=11

H

W= 2r10g( kn)T]

Chooserandom x, € {-w+1,-w+2,...,0,...,w—1,w}

if P(Xo) - Pa(X9) = Py(%y) 2 0

then return "B (X)-R(x) # PRy(x)"
gse  "R(X)-R(x)=PF(x)"
Note: If F-P,=PF;, then never any error!

If B-P,#P, then, since the polynomial
Q=P -P,—P, has degree<2n,

= error probabilitygﬂ:ESe Q.E.D.
2w w




Application to Perfect Matching

—>Randomized Algorithm for matching
Let G = (V, E) be an undirected graph with test:
vertex set V = {l,...n}.

[1] Choose each X; to be a random integer
A perfect matching of G is a set of n edges on E

with no common endpoints. in {1,...,nc}
Define n x m matrix M [2] If determinate (M)=0
rxij if (i,j)eE then return, "no perfect matching",
such Mij =11 if | = | else, return, "a perfect matching
. exists".
| 0 otherwise

1
Can set C> a3 to get error <—_.
Let X; =—X;; be indeterminate variables. n

Lemma (Edmonds): G has perfect
matching iff determinate (M)#0.




Strongly Universal Hash Functions

(Wegman and Carter)

Let H be a set of hash fns A— B

def: H is strongly universalp if

Va,...a,e A Vb,...b €B

H

B’

functions in H take & —>b

for 1 =1,...,n.

Example: Let A,B be sets in some finite
field

Let H= class of polynomials degree N of
one variable.

Claim: H is strongly universal, .

Proof: Given a,,...,a, b,...,b

n

d exactly one polynomial degree N
that interpolates

through distinguished pairs

a —b for all i =1,...,n.

Q.E.D.




Applications of Polynomial Hashing to
Authentication System:

Let M = possible message set
= authentication tags
public knows set functions H from M — T

2. sender/receiver share secret random f e H
3. sender sends message min M with

authentication tag f (m)

case: H = strongly universi setfnsM — T

= polynomials degree <|M|

Claim: unbreakable with prob =1 _|__}_|

Proof: If f random fn in H forger must pick correct
fn f from H'={he Gf(m) = h(m)} and substitute
m' for ms.t. f(m') = f (M), but, by definition of

strongly universi, fns, only l—:_' of fns in H' map

m to f(m). Q.E.D.

Application to Testing Set Equality

Given: set elements A={a,,...,a,} and
sets S,...,S, initially empty

Operations:
1. add element 3 to set S
2. delete element & from set S

3. testequality S, =S ?

I mplementation:

Use set hash fn H, which is strongly
universal, for each n.

Each f € H maps from A to B.

assume: B is group with operation @ and

inverse

Example: Analyze following implementation

(Use variables V,,...,V,, initially all fixed b, € B.)

Operatio: Implementatic
Sj«Suial Vi<V 8 f(a)
S« S-1{a} VeV ®f@)”

test SJI = SJZ ? test VJl = VJZ ?




Hashing Algebraic Expressions Hashing Complex Expressions

(Gonnet, "Determining Equilibrium of Expressions in

Random Polynomial Time", 1984 STOC) Assume P prime > 2
Generalizations: Lemma: Ji s.t. i’ =—1mod p, iff
(1) complex arithmetic expressions p =4k +1 for some k
Partial Results: Proof: Since any prime p>2 is odd so
(2) expressions with roots & rational (p _ ly is integer.
components 2

(3) expressions with exponents

Let a be generator of mult. group of Zp.

Then o'=1modp and o =—-1modp.
Thus i’=o" *=-1modp if i =a* where

k=Y. OQ.E.D.

(4) expressions with trigonometric fns

Example: For p=13, i’ =—1,mod p
for | =5.

Then: Can do equivalence testing
of complex expressions in
random polynomial time.




Hashing Expressions with Constant

Expressions:

Exponents in Finite Fields

EE allow E to have +,-,x,+ operations.

(Compute E mod p.)
requires E' only to have +,- operartions.

(Compute E' mod p—1.)
Since multiplication group in Z, is a cyclic
group with one less element than entire

group Z,.

Hashing Expressions with Square Roots

Proposition:

If p=4nj+1is prime >2,
then . | mod pis defined.

Hashing Expressions
with Trigonometric Functions

(no provable method)

Extensions: (Morton)

Can extend construction to find

e,ms.t. €™ =—1 for certain primes p.

Open Problem:
= get a provable method for identity

testing of trigonometric functions

sin(X),cos(X), etc.

| dea: Use equivalences
sin(x) = (X —e™) 2i

cos(X) = (eix +e‘ix)/2




