Algorithms Professor John Reif

ALG 4.3

Hashing Polynomials and Algebraic Expressions:

- (a) Identity Testing of Polynomials
- (b) Applications of Polynomial Hashing
- (c) Hashing Classes of Algebraic Expressions

Reading Selection:

Handout: Ibarra & Moran, "Probabilistic Algorithms for Deciding Equavalence of Straight-Line Programs", JACM, Vol. 30, No. 1, pp. 217-228, Jan. 1983.

Main Goal of Lecture:

Develop techniques for testing equality of Expressions

test
$$\varepsilon_1 = \varepsilon_2$$
?

by using test

$$hash \left(\varepsilon_1\right) = hash \left(\varepsilon_2\right)?$$

Goals:

- (1) <u>provable</u> bounds on error probability
- (2) <u>applicable</u> to largest possible class of expressions

Definitions:

polynomial expression: l or any variable, or integer, or $\alpha + \beta$, $\alpha - \beta$, $\alpha \cdot \beta$, or $\alpha \uparrow \kappa$, where

α, β are polynomial expressions, and κ is a positive integer.

Straight Line Program Π : Input $x_1,...,x_n$ sequence assignments--

$$length(\theta) \begin{cases} x_{n+1} \leftarrow x_{i_1} \theta_1 x_{j_1} \\ x_{n+2} \leftarrow x_{i_2} \theta_2 x_{j_2} \\ \vdots \end{cases}$$

output x_L where $L = length(\Pi)$.

allow operations $\theta_{\kappa} \in \{+,-,\cdot,\uparrow\}$ $\Pi(x_1,...,x_n) \text{ denotes output value.}$

Notes:

- (1) Given a polynomial expression α , can construct a straight-line program of size linear in input polynomial α .
- (2) A straight-line program

$$\Pi(x_1,\ldots,x_n)$$

will yield a <u>polynomial expression</u> α_{Π} with integer coefficients where $degree\left(\alpha_{\Pi}\right) \leq 2^{length(\Pi)}$

If $\Pi(x_1,...,x_n)$ is a program over Q, $|\Pi(x_1,...,x_n)| \le 2^{2\operatorname{length}(\Pi)}$ can be proved by induction on length (Π) .

basis: true for case length $(\prod) = 0$

induction step: if true for length
$$(\prod) \le k-1$$
 and $\prod (x_1,...,x_k) = \prod_1 (x_1...x_k)\theta_k \prod_2 (x_1...x_k)$, then $|\prod (x_1...x_k)| \le 2^{2length(\prod)}$. Q.E.D.

Let Q be an infinite field. Let $P(x_1,...,x_n)$ be nonzero polynomial degree d. Lemma If $A \le Q$ size $\kappa = |A| > d$, then \exists at least $\kappa - d$ element $a \in A$ α st. $P(a) \ne 0$.

Proof: By induction on *n* Basis: If n=1, then P has $\leq d$ roots in O. **Induction:** Suppose lemma holds for polynomials with less than n variables. Since P nonzero, $\exists (a_1, ..., a_{n-1}, c) \text{ s.t. } P(a_1, ..., a_{n-1}, c) \neq 0.$ So by induction hypothesis \exists at least $(\kappa - d)^{n-1}$ such $(a_1, ..., a_{n-1}) \in A^{n-1}$ s.t. $P(a_1,...,a_{n-1},c) \neq 0$. But the $P(x_n) =$ $P(a_1,...,a_{n-1},x_n)$ is nonzero polynomial with at least κ -d elements in A s.t. $P(x_n) \neq 0$. Lemma follows: Q.E.D.

This is the <u>key Lemma</u> used to justify hashing polynomials!

If $P(x_1...x_n)$ degree d in Q,

Theorem: If $\kappa = |A| \ge 2dn$, and \overline{a} is a random element of A^n , then $\text{Prob}(P(\overline{a}) \ne 0) \ge \frac{1}{2}$

Proof:

$$\begin{aligned} \mathbf{Prob} \big(P(\overline{a}) \neq \mathbf{0} \big) &= \frac{\left| \left\{ \overline{a} : \overline{a} \in A^n, P(\overline{a}) \neq \mathbf{0} \right\} \right|}{\left| A^n \right|} \\ &= \frac{\left(\kappa - d \right)^n}{\kappa^n} \quad by \ Lemma \\ &= \left(1 - \frac{d}{\kappa} \right)^n \\ &\geq \left(1 - \frac{1}{2n} \right)^n \ \text{since} \ \kappa \geq 2dn \\ &\geq \left[\left(1 - \frac{1}{2n} \right)^{2n} \right]^{\frac{1}{2}} \\ &\geq e^{-\frac{1}{2}} \quad \text{since} \ \left(1 - \frac{1}{2n} \right)^{2n} \geq e^{-1} \\ &\geq \frac{1}{2} \quad \text{since} \ 2 \geq e^{\frac{1}{2}} \end{aligned}$$

$$Q.E.D.$$

Lemma 2:

If κ is an integer s.t. $1 \le \kappa \le 2^{2n2^n}$, and m is randomly chosen from $\{1, ..., 2^{2n}\}$, then $Prob(\kappa \ne 0 \mod m) \ge \frac{1}{4n}$ for n >> 0.

Proof:

By the prime number theorem, the number of primes less than 2^{2n} is at least 2^{2n} /2n for large n.

But K has at most $2n2^n$ prime divisors.

Hence, $Prob(\kappa \neq 0 \mod m)$ (# primes $\leq 2^{2n}$) which don@ divide κ

$$\geq \frac{2^{2n}/2n-2n2^n}{2^{2n}} \geq \frac{1}{4n} \quad Q.E.D.$$

```
Algorithm: Randomized Zero Testing
Input: program \pi(x_1,...,x_t) length r
  <u>begin</u>
      n = r + t
      A = \{1, 2, ..., 2t2^r\}
     for i = 1, ..., 8n, \underline{do}
          begin
              choose random \bar{a} \in A^t
              choose random m \in \{1, ..., 2^{2n}\}
              if \pi(\overline{a}) \neq 0 \mod m,
              then return "\pi \neq 0"
          end
      <u>return</u> "\pi = 0"
  end
```

<u>Theorem</u>: $Prob(correct\ output) \ge \frac{1}{2}$

Proof: If $\pi \equiv 0$, then algorithm always correct.

Suppose $\pi \neq 0$. By Lemma 1,

 $\operatorname{Pr}ob(\pi(\overline{a}) \neq 0) \geq \frac{1}{2}$. Also, if $\pi(\overline{a}) \neq 0$, then

 $\operatorname{Pr}ob(\pi(\overline{a}) \neq 0 \operatorname{mod} m) \geq \frac{1}{4n}, so$

 $\operatorname{Pr}ob(\pi(\overline{a}) \neq 0 \mod m) \geq \frac{1}{2} \cdot (\frac{1}{4n}) = \frac{1}{8n}$. Hence,

 $\operatorname{Prob}\left(\operatorname{correct\ output}\right) \geq 1 - \left(1 - \frac{1}{8n}\right)^{8n}$

$$\geq 1 - e^{-1}$$

$$\geq \frac{1}{2}$$
 Q.E.D.

Applications of Polynomial Zero Testing

- (1) Given $n \times n$ matrices A, B, C problem $A \cdot B = C$?
- (2) Given n degree Polynomials $P_{1}(x), P_{2}(x), P_{3}(x)$ $\underline{problem} P_{1}(x) \cdot P_{2}(x) = P_{3}(x)$?
- (3) Given n bit <u>integers</u> x_1 , x_2 , x_3 <u>problem</u> $x_1 \cdot x_2 = x_3$?
- (4) Given n × n Matrix A, integer r problem rank(A) = r?
- (5) Given graph G of n vertices problem does G have perfect matching?
- (6) Authentication systems
- (7) Testing <u>equality of sets</u> with element addition and deletion operations

Given:

non integer matrices A,B,C

Theorem:

Can test $A \cdot B = C$? in time $O(n^2 \log n)$ with success probability $\geq 1 - \frac{1}{n^c}$, for a constant c.

Proof:

Let $K = c \log n$. Choose k random vectors $\vec{x}_1, ..., \vec{x}_k$ each of size n, from elements in $\{-1,1\}$

If $\exists i \in \{1,...,k\}$ s.t. $A(B\vec{x}_i) \neq (C\vec{x}_i)$ then output " $A \cdot B \neq C$ " else output " $A \cdot B = C$ "

Note: if $A \cdot B = C$, then no errors ever! Else: if $A \cdot B \neq C$, $\forall i \in \{1,...,k\}$ $Prob(A \cdot (B \cdot \vec{x}) \neq C\vec{x})$ $= Prob(D\vec{x}_i \neq 0)$ where $D = A \cdot B - C \neq 0$ $\geq \frac{1}{2}$ since at most 2^{n-1} out of 2^n vectors \vec{x} have $D \cdot \vec{x} = 0$ if $D \neq 0$.

So, $Prob(A \cdot (B \cdot \vec{x}_i) \neq C\vec{x}_i \text{ for } i \in \{1,...,k\})$ $\geq 1 - 2^{-k} = 1 - n^{-c}$. Given Polynomials: $P_1(x) \cdot P_2(x), P_3(x)$ degree n.

Theorem: Can test $P_1(x) \cdot P_2(x) = P_3(x)$? in expected O(n) arithmetic steps.

 $\underline{\text{Proof}}\colon \text{ Fix error prob. } \epsilon\in\left(0,\frac{1}{2}\right).$

Let

$$k = \frac{\lceil 1 \rceil}{\varepsilon},$$
 $w = 2^{\lceil \log(kn) \rceil}$

<u>Choose random</u> $x_0 \in \{-w+1, -w+2, ..., 0, ..., w-1, w\}$

$$\underline{if} \qquad P_1(x_0) \cdot P_2(x_0) - P_3(x_0) \neq 0$$

$$\underline{then \quad return} \qquad "P_1(x) \cdot P_2(x) \neq P_3(x)"$$

$$\underline{else} \qquad "P_1(x) \cdot P_2(x) = P_3(x)"$$

Note: If $P_1 \cdot P_2 = P_3$, then never any error! If $P_1 \cdot P_2 \neq P_3$, then, since the polynomial $Q \equiv P_1 \cdot P_2 - P_3$ has $degree \leq 2n$,

$$\Rightarrow$$
 error probability $\leq \frac{2n}{2w} = \frac{n}{w} \leq \varepsilon$ Q.E.D.

Application to Perfect Matching

Let G = (V, E) be an undirected graph with vertex set $V = \{1,...,n\}$.

A <u>perfect matching</u> of G is a set of n edges on E with no common endpoints.

Define n x m matrix M

such
$$M_{ij} = \begin{cases} x_{ij} & \text{if } (i,j) \in E \\ 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

Let $x_{ij} = -x_{ji}$ be indeterminate variables.

<u>Lemma</u> (Edmonds): G has perfect matching iff determinate $(M) \neq 0$.

 \Rightarrow Randomized Algorithm for matching test:

- [1] Choose each x_{ij} to be a random integer in $\{1,...,n^c\}$
- [2] If determinate (M) = 0then return, "no perfect matching",

else, return, "a perfect matching exists".

Can set $c > \alpha 3$ to get error $< \frac{1}{n^{\alpha}}$.

Strongly Universal Hash Functions (Wegman and Carter)

Let H be a set of hash fins $A \rightarrow B$

def: H is strongly universal_n if

$$\forall a_1 \dots a_n \in A \quad \forall b_1 \dots b_n \in B$$

then $\frac{|H|}{|B|^n}$ functions in H take $a_i \rightarrow b_i$ for i = 1,...,n.

Example: Let A, B be sets in some finite field

Let H= class of polynomials degree n of one variable.

Claim: H is strongly universal_n.

Proof: Given $a_1, ..., a_n, b_1, ..., b_n$ \exists exactly one polynomial degree n that interpolates through distinguished pairs $a_i \rightarrow b_i$ for all i = 1, ..., n.

Q.E.D.

<u>Applications</u> of Polynomial Hashing to <u>Authentication System</u>:

Let M = possible message set T = authentication tags

- 1. public knows set functions H from $M \rightarrow T$
- 2. sender/receiver share secret random $f \in H$
- 3. sender sends message m in M with authentication tag f(m)

case: H = strongly univers; set fns M → T= polynomials degree < |M|

Claim: unbreakable with prob $\geq 1 - \frac{1}{|T|}$

<u>Proof</u>: If f random fn in H forger must pick correct fn f from $H' = \{h \in G | f(m) = h(m)\}$ and substitute m' for ms.t. f(m') = f(m), but, by definition of strongly univers; fns, only $\frac{1}{|T|}$ of fns in H' map m' to f(m). Q.E.D.

Application to Testing Set Equality

Given: set elements $A = \{a_1, ..., a_n\}$ and sets $S_1, ..., S_m$ initially empty

Operations:

- 1. add element a_i to set S_i
- 2. delete element a_i from set S_i
- 3. test equality $S_{j_1} = S_{j_2}$?

Implementation:

Use set hash fn H, which is strongly $universal_n$ for each n.

Each $f \in H$ maps from A to B.

<u>assume</u>: B is group with operation \oplus and inverse

Example: Analyze following implementation
(Use variables $V_1,...,V_m$ initially all fixed $b_0 \in B$.)

Operatio:Implementatic $S_j \leftarrow S_j \cup \{a_i\}$ $V_j \leftarrow V_j \oplus f(a_i)$ $S_j \leftarrow S_j - \{a_i\}$ $V_j \leftarrow V_j \oplus f(a_i)^{-1}$ $test S_{j_1} = S_{j_2}$? $test V_{j_1} = V_{j_2}$?

Hashing Algebraic Expressions

(Gonnet, "Determining Equilibrium of Expressions in Random Polynomial Time", 1984 STOC)

Generalizations:

(1) complex arithmetic expressions

Partial Results:

- (2) expressions with roots & rational components
- (3) expressions with exponents
- (4) expressions with trigonometric fns

Hashing Complex Expressions

Assume p prime > 2

<u>Lemma</u>: $\exists i$ s.t. $i^2 = -1 \mod p$, iff p = 4k + 1 for some k.

Proof: Since any prime p > 2 is odd so (p-1)/2 is integer.

Let α be generator of mult. group of Z_p . Then $\alpha^{p-1} \equiv 1 \mod p$ and $\alpha^{\binom{p-1}{2}} \equiv -1 \mod p$. Thus $i^2 \equiv \alpha^{\binom{p-1}{2}} \equiv -1 \mod p$ if $i = \alpha^k$ where $k = \binom{p-1}{4}$. Q.E.D.

Example: For p = 13, $i^2 = -1$, mod p for i = 5.

Then: Can do equivalence testing of complex expressions in random polynomial time.

Hashing Expressions with Constant Exponents in Finite Fields

Expressions:

 $E^{E'}$ allow E to have +,-,x,+ operations. (Compute E mod p.) requires E' only to have +,- operations. (Compute E' mod p-1.) Since multiplication group in Z_p is a cyclic group with one less element than entire group Z_p .

Hashing Expressions with Square Roots

Proposition:

If p = 4nj + 1 is *prime* > 2, then \sqrt{j} mod p is defined.

Hashing Expressions

with Trigonometric Functions

(no provable method)

Extensions: (Morton)

Can extend construction to find e, π s.t. $e^{i\pi} = -1$ for certain primes p.

Open Problem:

 \Rightarrow get a provable method for identity testing of trigonometric functions $\sin(x), \cos(x)$, etc.

<u>Idea</u>: Use equivalences

$$\sin(x) = \left(e^{ix} - e^{-ix}\right)/2i$$

$$\cos(x) = \left(e^{ix} + e^{-ix}\right)/2$$