Randomized Algorithms, Approximation Algorithms
Leonard J. Schulman October 6, 1997
Georgia Tech, Fall 1997 Scribe: David E. Cardoze

We will consider a communication problem and provide both randomized and deterministic
protocols to solve it. The problem is the following. Two parties, one on the moon and the other on
earth, have each a string of n bits, say z and y respectively, and they want to determine whether
x = y or not. They would also like to minize the communication cost, which is defined as the
total number of bits communicated back and forth. We will give a simple randomized protocol
achieving O(logn) cost, and we will show that any deterministic algorithm requires €(n) bits to
be transmitted.

Randomized Protocol

We first recall a fact from number theory that we will make use of. Let w(m) be the number
of primes less than or equal to m, then there exist constants @ < 1 and b > 1 such that alOTg”m <
m(m) < biggr

The protocol is rather simple. First, the party on earth picks a prime number p at random
between 2 and cn log n for some suitable fixed constant ¢. Then, it transmits the pair (p, y mod p) to
the moon. Once the party on the moon receives the message, it checks to see whether z = y mod p.
If they are not equal he knows that # y. If © = y mod p he may conclude that it is likely that
r=1y.

We want to show that if @ # y then it is very likely that y # 2 mod p. In other words we would
like to prove that if @ # y, then y # 2 mod p with positive probability, say %

Proof: Suppose x # y. Then |z — y| < 2. Therefore at most n primes divide |z — y|. But we

have selected p uniformly among at least abgcglmll% > 19—0acn > 2n primes. Therefore the fraction

of primes on which we fail to detect that & # y is less than or equal to %

The total number of bits required in this exchange is O(logn). Suppose the parties repeat
this process t times, and they declare x and y to be equal if none of the trials proved them to be
different. Then, this will be a one-sided error randomized protocol for which the probability of
error is 0 if @ = y, and 27" if @ # y. The protocol has a cost of O(tlogn).

Deterministic Protocols

In this section we show that every deterministic protocol for the problem above must require
Q(n) transmissions.

Proof: The protocols are designed for a fixed value of n. For a given protocol 11 consider a
table T whose rows are indexed by the possible values of # and the columns by the possible values
of y. Since both z and y are in {0, 1}” there are 2" rows and columns in 7. For every 1 <, < 27,
let T; ; = 1if + = 7 and 0 otherwise.

As both parties carry out protocol II, at any moment the entries in 1" that represent the
possible values of & and y given the exchange of information carried so far can be partitioned
into combinatorial rectangles, that is the entries need not be adjacent (figure 1). The number of
rectangles increases at most by a factor of two after each transmission.

Let’s consider the entries in the diagonal of T, the 1 entries, at the end of the protocol, when
at least one of the parties knows whether the two strings are the same or different. Each one

Figure 1:

Figure 2:

of these entries is in some combinatorial rectangle. If two of them are in the same rectangle R,
then there must also be 0 entries in the opposite corners, but this would mean that neither player
was sure of the answer and so the protocol is incorrect. Therefore there are at least 2" rectangles
(one associated with each of the diagonal elements), and in the worst case the protocol will take n
transmissions.

Game Tree Evaluation

By a game tree here we mean a strict binary tree where all nodes are labeled with either a 1 or
a 0 (figure 2).

A given game tree is meant to represent a game between two players, the 0-player and the
1-player. The game is played as follows. The player that corresponds to the label at the root starts
the game by moving down through the left or right child of the root. The player that corresponds
to the label of the node just reached moves next by again picking a child of the current node. This
process is repeated until a leaf is reached. The goal of each player is to reach a leaf that is labeled
with its number. That is a 0 for the 0-player and a 1 for the 1-player.

AVAVAVA

0 10 01 10 1

Figure 3:

Let C7 be the boolean circuit that results from relabeling the internal nodes of T as follows
(figure 3). If v is an internal node of T labeled with 1 then, v is labeled with a vV in Cr. If v on
the other hand is an internal node of T labeled with a 0 then v is labeled with an A in C'7.

We claim that given a game tree T, determining which player wins is equivalent to evaluating
the circuit C'r. By this we mean that player 1 wins the game iff C'r evaluates to 1.

Proof: The proof is by induction in the height of the game tree. For the base case we consider
game trees of height one. Let T be such a tree. If the label at the root is 0 then the 1-player will
win iff both leaves are labeled 1. Now, the root of the circuit C'r is labeled with A and therefore it
will evaluate to 1 iff both leaves are labeled 1. The case where the root of T is labeled 1-player is
similar.

For the inductive step, assume that given a game tree of height at most n, the 1-player wins iff
the corresponding circuit evaluates to 1. Now, let T be a game tree of height n 4+ 1, and let 7, and
T; be the subtrees rooted at the right and left child of T" respectively.

If the root of T is labeled with a 0, then the 1-player wins the game iff it wins the games
represented by T, and T;. Since the root of C'r is labeled with A, this means that the 1-player wins
iff C'r evaluates to 1. If the root of T is labeled with a 1 then the 1-player wins the game iff it wins
either one of the games represented by T, or T;. Now, since C'r in this case is labeled with a V,
this is equivalent to saying that the 1-player wins iff C'r evaluates to 1.

