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Notes for lecture 4, January 24, 2003. Chernoff bound, FPRAS.

1 Chernoff Bound

Let X be a real-valued random variable with distribution D:
Pr[X € S]=D(S),SCR

Definition 1 The moment-generating function, or characteristic function for X (or, more precisely but less com-
monly, for D) is defined for t € R by
gp(t) = E [e"*]

Note that, for ¢t € C, this gives the characteristic function for ¢ pure-real, and the Fourier transform for ¢
pure-imaginary. For any D, gp(0) = E[1] = 1.

Assume F [X] = §. We would like to find a large deviation bound. That is, if we sample z1, ..., z, from D
and take T = L 3" | 2;, we would like to know how the distribution of X is concentrated around 6. Last
time we bounded the tails, in the form Pr [|X — 6| > ¢] < f(c), with a polynomial function, f, that dropped
off as %. This polynomial bound is good in general for small c. However, further out on the tail we can get
an exponential tail drop-off if D is tame enough (in particular, does not have a “heavy” tail). Without loss
of generality, take § = 0.

Theorem 2 (Chernoff) If the integral defining gp(t) converges unconditionally in a neighborhood of 0, and gp(t)
is differentiable at 0, then
Ve >03c. <1:Pr X>e] <c

The idea is that the quality of the large deviation bound depends on how heavy the tails of D are, and that
this is measured by the smoothness of gp at the origin; a moment-generating function that is differentiable
at the origin guarantees exponential tails.

Proof :
Pr[X >¢] =Pr [eﬁ"Y > eﬁm] forany 8 >0
< % Markoff bound
e [ornie]
= e Pne (B [PX])" z; are independent

- (B
= (e_ﬂégD (/3))”



We now need to show that there is a 3 > 0 such that e #¢gp(B) < 1. At 8 =0, e%gp(0) = 1, so let’s find the
derivative of e P¢gp () at 0. Since gp is differentiable at 0 we have:

dgp(B)| _ OE [e7¥]
9B |, op o
- E dePX can switch order of derivative and integral by the
= 8 ||, unconditional convergence of gp around 0
= E [XeP] |0
=E[X]=6=0

So, the moment-generating function is flat at 0. Now we can differentiate the whole function:

de=Pegp(B) _ de=Pegp(B)
6ﬂ 0 618 0
=e P (8) — CG_GﬂQD(,B)|O product rule
=0 g'D(O) —ee” gD(O) atf =0
T le_/

= —¢€

We have determined that 38 > 0 : e=P¢gp(B) < 1, and thus there is a ¢, < 1 as stated in the theorem. O

This method also allows us, in some cases, to find the value of ¢, which gives the tightest Chernoff bound.
(Of course in for general D and e this can be a complicated task and we often settle for bounds on the best
Ce.)

Example 3 Symmetric Random Walk

Take D to be the probability with Pr[X = 1] = Pr[X = —1] = 1. The moment-generating function is:

1
gp(t) = E(et +e7t) = cosht
Finding the optimal c,:
Ce = i%f ¢ % cosh 8

= --.insert calculus here - - -

:(l—e)%(l—%e)*% using,@z%logite
Define:
k. = —logec,
= 1;elog(l—e)-i- (I;LG) log(1 +€)

By the Chernoff bound we have:
Pr[X > ¢ < ehm
Consider two distributions: p, with probabilities {1, 1}, the symmetric random walk from above, like a fair
1—¢

coin, and g, with probabilities {15, 1<}, like a biased coin. Let’s rewrite k:

l—e, ¢ 1+ Lte
5 log 1 +Tlog L

ke =

= Zp(x) log % defined as D(p||q)



This value is the Kullback-Leibler divergence of p from g, also known as the information divergence or the
relative entropy of p with respect to ¢. D(p||g) is not a metric (it isn’'t symmetric and doesn’t satisfy
the triangle inequality). For example, if have a fair coing but we sample 90 heads out of 100 throws,
D({0.9,0.1}||{0.5,0.5}) quantifies how unlikely this event is. It isn’t symmetric since, of course, the proba-
bility of getting 100 heads with a fair coin is not the same as the probability of getting 50 heads with a coin
that has probability 1 of coming up heads. D is useful throughout information theory and statistics (and
is closely related to the “Fisher information”); it’s role in the Chernoff bound is one of the reasons for it’s
importance. For more information see the text by Cover and Thomas.

2 #DNF (Continued)

Recall, from last time, that we have an algorithm for estimating #DNF which runs in time poly(n, 1, 1) and
that produces an unbiased estimator 71" of 8 satisfying:

Pril—e)f <T<(1+4+€f]>1-0
Definition 4 Algorithm A is a FPRAS (fully polynomial randomized approximation scheme) for quantity 6 if:

o Aisrandomized,
e Aruns in time poly(n, L), and

e Prl(1—-€e)d <T < (1+€)f] > 2.

Lemma 5 Having a FPRAS implies that in time poly(n, £,log ) we can produce T satisfying:

Pril1—e)f0<T<(1+€f]>1-6

In our algorithm from last time, we started with an algorithm to approximate #DNF, and amplified it using
the Chebyshev inequality to shrink the variance below ¢, and then continued to shrink it below ed. The
above lemma shows us that there is a way of avoiding going as far in the variance-reduction as we did last
time, since we only need 2 of the probability mass inside the 6(1 =+ €) range to apply the lemma.

Proof : By assumption, we have a random variable X which we can produce in time poly(n, 1) with 2 of the
probability mass inside the range 6(1 % ¢€). Collect m = (log $)/D ({3, 3},{%, 3}) samples z1, ..., T, from

this distribution. (Here, D ({1, 1},{2,1}) is the divergence corresponding to an empirical “fair” distribu-
tion given a coin with probability 2/3 of coming up heads.) Select the median of z1, ..., %, as the output.

. 2.2
By assumption, Var(z;) < ¢

Therefore, with probability 2, each sample is in the 8(1 + €) range, so:

. Therefore, by the Chebyshev inequality, we have Pr[z; — 6| > f¢] < 1.

Pr[|median(|z;|) — 6] > 8¢] < eP2({(3:31{5.31)m — 5

O

Now our overall algorithm consists of m applications of a variance-reduction step, which averages the
samples, and one median calculation on the m averages.

Next time we will discuss Karger’s min-cut algorithm (as in CS 138), and put this together with the #DNF
approximation algorithm, to solve the network reliability problem.



