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1 Approximating the Permanent

Given an ����� matrix
�

, the determinant of
�

can be defined by the formula
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where -  is the group of all permutations of the integers .�/1032424250 �76 , and �8�1�

9� �;:=< / is the sign of

�
, which

can be defined by writing
�

as a product of cycles
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and setting
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For example, if
�

maps

 /10QPR08S)0�T)0VU�0QW � to


 P�0QSR03/10QUR0�TX08W � , the cycle decomposition is
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 W � , and the sign

is �8�1�
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Note that even though we have defined the determinant as a sum of ��c terms, determinants may be cal-
culated easily in polynomial time (for example, by Gaussian elimination). Also, it can be shown that the
problems of inverting matrices, calculating determinants, and multiplying matrices each have the same
asymptotic complexity (up to factors of �'d + &�, ), which is known to be between e 
 � \ � and f 
 � \	g h � . It is more
difficult, however, to calculate the permanent of a matrix, which we now define.

Definition 1 The permanent of a matrix
�

is given by the formula

i �3jk
 �l�m� �
����� �
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Despite the apparent similarity between permanent and determinant, computing the permanent is known
to be #P -complete even for


9q 04/ � matrices (Valiant). Therefore, instead of trying for an efficient polynomial
method for computing permanents, we seek approximations. Recently, a FPRAS for matrix permanents
with nonnegative entries was found by Jerrum, Sinclair and Vigoda. However, this algorithm is rather in-
volved, so we will focus on an earlier approximation algorithm for


�q 04/ � matrices running in f 
 S  1r \ its1u%v 
 � ���
by Karmarkar, Karp, Lipton, Lovasz, and Luby. (Actually that paper presented a yet stronger runtime off 
 P  1r \ its1u%v 
 � �8� but we won’t show that today.) Before KKLLL, the fastest method, due to Ryser, ran in timef 
 P  � � and computed the permanent exactly; it’s still the fastest method known for exact computation.

In what follows,
�

will be a

�q 03/ � matrix. Also, wyx will denote the bipartite graph on �{z=� vertices with an

edge

�| 0N} � for every nonzero ( #

@ :~�
. Note that i �4j�
 �
� is exactly the number of perfect matchings in wyx .

The algorithm is based on the following observation by Godsil and Gutman. Construct a random matrix�
by replacing each / in

�
by an independent uniform choice of

< / . Then
�R�	�k
 � �8\

is actually an unbiased
estimator of i �3jk
 �l� .
Theorem 2 i �3jk
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Proof : For convenience, will define
� � ��>  #%$'&�� #�* ��+ #%, . Also, let � 
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( #�* ��+ #%,
� /�� | 6 . We have
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The first term is just i �3jk
 �l� since

 < / �8\{� / . For the second term, let

� & 0 � \ : � 
 �l� , � &��� � \ . Choose
|

s.t.� & 
p| � �� � \ 
p| � . Since entries of
�

are independent, we have
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 � #p* ���Q+ #n, ��� 
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and the second term vanishes. �
Since

���4�k
 � �[\
can be computed in polynomial time, we can use this to approximate i �4j�
 �
� if the variance

is not too large. Specifically, if we let � � ���4�k
 � � \
, we must bound the critical ratio

� 
 � \ ����� 
 � � \ .
Let �tx be the set of subgraphs of w{x which are the disjoint union of a matching and a 2-regular graph
(several disjoint cycles). We will denote by � v � 
�� �

the number of cycles for a given
� : �bx .

Claim 3
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Proof : We know
� 
 � �m� i �4j�
 �
� , so � 
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Given

� & 0 � \ : � 
 �
� , let the graph w 
9� & 0 � \ � be the union of the matchings corresponding to
� & and

� \ .
Then w 
�� & 0 � \ � : �tx since the graph is a matching on those points where

� & and
� \ agree, and a 2-regular

graph elsewhere. Conversely, given
� : �`x , there are P$#&%'# +

� ,
pairs


9� & 0 � \ � that produce
�

. To see this,
note that the values of

� # are forced on the matching, and once a single edge in a cycle is chosen to belong
to
� & or

� \ , all other edges in the cycle are forced in alternating order. Thus

� 
 � � \ � �� �! �" P #&%'#
+ � ,

�
Therefore, if we can write

� 
 � \3� in terms of a similar sum over �`x , we will have our bound on the critical
ratio.

Theorem 4
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Proof : Since � � ���	��
 �
�Eh
, we get
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Note that if a variable � # @ occurs an odd number of times in
� ��� � �(	 � �
) � �(* , then the expectation of this

term will vanish, since
� 
 � \.-5] &# @ ��� q

. If all � # @ ’s occur an even number of times,
� ��� � �
	 � �() � �(* � / . We will

call

9� & 0 � \ 0 �,+ 0 � h � an even 4-tuple if all � # @ ’s occur with even powers. This allows us to write
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Let w 
�� & 0 � \ 0 �2+ 0 � h � be the union of the matchings corresponding to the
� # . Since


9� & 0 � \ 0 �,+ 0 � h � is an even
4-tuple, each edge in w 
�� & 0 � \ 0 �,+ 0 � h � comes from either 2 or 4

� # ’s. Thus w 
�� & 0 � \ 0 �2+ 0 � h � : �tx . If we label
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each edge with the set of indices in .�/10VP�08S)0�T 6 corresponding to it, the labeled graph uniquely determines
the even 4-tuple. Since the labels alternate around cycles, each labeling is uniquely determined by the
choice of label for one edge in each cycle, and the total number of labelings corresponding to a graph

�
is� T

P�� #&%'# +
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� ,

Finally, we claim that the sign term �8�1�

9� & � \ �,+k� h � is 1 for all even 4-tuples.

To see this, let
_ � � Mb&& � \ � Mb&+ � h (composing functionally, i.e., starting from the right). By our earlier com-

ments, �8�1�

�_ ���

�8�1�

9� & � \ �,+k� h � . Let � be a vertex on the LHS of w 
�� & 0 � \ 0 �2+ 0 � h � . (I.e., an element of .�/1032n2%2%0 �76

acted on by these permutations.)

If � is part of a matching edge, then
_O
 � �a� � and so � is in a cycle of length / in

_
, which contributes a factor

of z / to �����

p_ �

.

If � is part of a cycle, then there are two cases to be considered. If � is part of a cycle with edges are labeled
“ /�P ”/“ S�T ”, then

_O
 � � � � and, again, � is in a cycle of length / in
_

, which contributes a factor of z / to

�8�1�

p_ �

. If � is part of a cycle with edges labeled “ /kS ”/“ P�T ” or “ /4T ”/“ P1S ”, then let � � � Mb&+ � h , and note that_O
 � � = � \ 
 � � . If � and � 
 � � belong to different cycles in
_

then those two cycles evenly split the elements of
one cycle of � , hence in combination they contribute a factor of z / to �����


p_ �
. If � and � 
 � � belong to the

same cycle in
_

then there is some � such that � 
 � � � _ - 
 � �Z� � \�- 
 � � , so the cycle is of odd length, hence it
contributes a factor of z / to �8�1�
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.

Since each even 4-tuple contributes 1 to
� 
 � \k� , and there are W�#&%'# +

� ,
even 4-tuples corresponding to each� : � x , � 
 � \ �a� �� �! " W #&%'#

+ � ,

�
We can now bound the critical ratio as follows:
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Since each cycle contains at least 2 vertices on each side of the bipartite graph, � v � 
�� � � � � P , and
� 
 � \ ����� 
 � � \ �S  �r \ . Therefore, by iteratively sampling the random variable � , we can produce a


 / z�� � -approximation to
the permanent in time f 
 S  1r \ its1u%v 
 � 03/ � � �8� .
The exponent in this technique can be reduced by sampling from the complex units . < /10 < | 6 (KKLLL), or
the quaternions (Barvinok). In fact, the critical ratio can be reduced all the way to a constant by using a
sufficiently high-dimensional Clifford algebra, a generalization of the complex numbers and quaternions
(Chien, Rasmussen and Sinclair). However, Clifford algebras are non-commutative, and there is no known
polynomial time algorithm for evaluating such determinants, so this does not translate into a FPRAS. (The
known FPRAS for the permanent uses a different method.)
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