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Notes for lecture 8, February 5, 2003. Approximate counting vs. approximate sampling

We assume that we have access to a uniform distribution on {0, 1}, and wish to obtain a uniform distribu-
tion on some other sets. Some probability distributions of interest are:

1. Uniform distribution on random walks on the one-dimensional integer lattice. (This is equivalent to
the uniform distribution on {0, 1}™ under the transformation 0 — Left, 1 — Right.)

2. A uniform distribution on random walks with a fixed bias (p,1 — p) on the one-dimensional integer
lattice. (For p which can be written as a/2° for some integer a and b, this can be done exactly in the
following manner. For each Le ft/ Right move examine the sequence of random variables {0, 1} and
move Left if {0,1}" is one of a set of a different pre-chosen sequences, else move Right. For other p,
it can be approximated to arbitrary accuracy by similar methods.)

3. Uniform distribution on permutations on the set {1,2,...,n}. (These can be obtained by shuffling
techniques. This and some of the next examples will be of particular interest to us in the rest of this
course).

4. Uniform distribution on the spanning trees of an undirected graph.

5. Uniform distribution on solutions to a knapsack problem, where a knapsack problem is defined as:
Given ay, ag, ..., an, b € N, a solution is a vector v = (v1, v, ..., v,) € {0,1}" s.t. Z via; <b
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6. Uniform distribution on matchings, or perfect matchings, of a graph.

7. Uniform distribution on self-avoiding walks in Z*.

Approximate counting vs. approximate sampling

Suppose we have a polynomial-time predicate ¢ , where ¢ : {0,1}" — {0,1}, and we want to either count
the number of solutions to ¢ (i.e., |¢1(1)|) or sample uniformly from the set of solutions to ¢.

Doing either task “perfectly”, i.e. without any error, is often computationally “hard”. For example if ¢ is
a Boolean formula, then we are asking for the number of satisfying assignments, which is at least as hard
as asking whether the formula is satisfiable. However, as we will see later, in many situations where exact
solutions are hard, an approximate solution can be obtained in polynomial time.

This raises the question of whether we should strive for an additive or a multiplicative approximation.
Specifically, suppose that Domain(¢) = 2", so that the number we wish to compute, 6 is between 0 and
2". Then the question is whether we are trying to produce an approximation between 6 + 2"¢, or between
6(1+e). The latter is more demanding, and generally more meaningful; this is especially true if the solution-
space that we are interested in represents an exponentially small fraction of the total sample space, where a
multiplicative approximation gives us an upper limit on our percent error, while an additive approximation
does not accomplish that.

Note: Since a poly-time algorithm for ¢ exists, one possibility is to do rejection sampling - i.e., generate a
random vector z in {0,1}", check if ¢(z) = 1 and if so return z, and otherwise repeat. While this will give
us a uniform distribution on the set of ¢ (1), the number of samples required may become exponentially
large if the relative proportion of solutions to the sample space is very small. Thus rejection sampling is not
a viable alternative in many cases. Frequently, in fact, we will be interested in the case that 6 is exponential



in n, yet an exponentially small fraction of 2". Then rejection sampling does not run in poly-time — and on
the other hand even if we could suppose that we had an algorithm to list the elements of ¢ !(1), in order,
and each in polynomial time, even that would not give us a method of sampling from ¢~*(1) uniformly (or
of counting it’s elements).

Unless we say otherwise, we'll henceforth be interested in multiplicative approximation. There’s a term for
this: a fully polynomial randomized approximation scheme (FPRAS) for ¢ is a randomized algorithm which, in
time polynomial in n and 1/¢, produces with probability at least 3/4 a multiplicative 1 + € approximation
to 4.

For example, we’ve seen a FPRAS for DNF formulas, but we note not to expect one for CNF formulas since
the existence problem (“does this formula have a satisfying assignment”) is NP-complete for CNF formulas.

We’re now interested in relating the counting task to the task of approximate sampling. A perfect sam-
pling procedure would enable us to sample from the distribution p that is exactly uniform on ¢~!(1); in
approximate sampling we’re willing to sample from a distribution g that is, in L; distance, within € of p (so
llp —qllh =X, [p(z) — q(z)| < €). So, we have two computational tasks, counting and sampling, in both of
which we’ve allowed some “distortion”; we’re interested in this lecture in relating the complexities of these
two tasks.

Definition: A search/sampling/counting problem is self-reducible if 3 a representation of n bits for the
objects defined by problem P of size m s.t. for i = 0, 1, the set of objects whose first bit is i are the objects of
another problem P; of size < m and P; is polynomial-time computable from P.

Examples of self-reducible problems:

1. SAT: P is the boolean formula, objects are the satisfying assignments, m is the formula size, n is the
number of variables.

2. Set of matchings of an undirected graph: P is the graph, objects are the matchings, n is proportional to
the number of edges, restriction is to choose an edge e between vertices w and v, Py is P —e, P; is P — {u, v}.

Potential counterexamples (non-self-reducible problems) discussed in class are problems whose structure is
not preserved under restriction (at least not under any obvious restriction), such as the set of prime numbers
less than N, or the set of 3-colorings of a graph.

Theorem (Jerrum, Valiant, V. Vazirani): TFAE for a self-reducible problem:

1. Vk 3 a polynomial-time algorithm that samples from a distribution p on the “objects” (the elements of
¢~1(1) s.t. if u is the uniform distribution on these objects, then ||p — u||; < n~F.

2. Vk 3 a polynomial-time algorithm that estimates the number of objects to within a multiplicative factor
1+ n*, except for an error that occurs with probability n—*.

Proof: In this proof we’ll ignore the distinction between n and m.

First we will show that 1 — 2.

We assume sampling to within O(n=(*+1)) L; distance of u. Now consider any root to leaf path. After

i — 1 steps, we will be at an internal node, designated a, and it will have two children - b and ¢. Let r;

be the actual fraction of solutions to problem a that are in the subtree c¢. Notice that the total number of
k-1

leaves in the tree equal to |t| = H .y which leads us to the following algorithm: Sample from the problem
=1

at node a until the fractions of leaves in nodes b and ¢ can be estimated to within additive n=*~! with

probability of error n=*~1. Then proceed to the child (b or ¢) in which this estimate g; is at least 1/2 (recall

that the tree is binary). After finally reaching a leaf, set Estimate= Hf;ll %

. Then if ¢ is the true number
of leaves, then unless an error event has happened somewhere (which by a union bound is at most n=*),
t/Estimate = [[¥ 7! L < (140 *1))" <14 n7% And for the same reason, and with the same bound
on the probability of error, Estimate/t < 1+n"*.

Now we will show that 2 — 1.

Atnode P, estimate the number of leaves of P, Py and P; to within a multiplicative factor of 1 + O(n=k1)



with an error probability of O(n=*~1). We'll call these estimates ¢, go and ¢;. Note that in the self-
reducibility tree the root is located at level 0 and the leaves are located at levels < n. To make the rest
of the proof technically simpler to state suppose that any leaves at depth < n are replaced by a chain of
nodes all the way down to a single leaf at depth n; so now all leaves are at depth n. Consider an internal
node of the tree, and let p, pg and p; be the true fractions of leaves in the corresponding subtrees. We’ll
show by induction that at level [, ||p — ¢||; < In~*~1. The case ! = 0 is obvious. Induction:

Let the internal node be labeled v and let its children be v; and v,. Let p, — ¢, = r. Then in the worst
case 1 = T O(n=*1) and Ba = %2 _ O(n=*1). S0 pu, — qu, < (g + r)((lqu_f +0(n~* 1) - gy, =

(

Pv v Pv qv
g,0(n~*1) +r(%2 + O(n~*=1)). By combining v1 and vz we obtain |(pv,, Pu;) = (quss 1)1 < gO(n~F~1) +

rq"Zq# + rO(n~*=1). Summing over the entire level [ results in ||p — ¢||} < ||]p — q||' (1 + O(n~*"1)) +
O(n~*"1) < In~*~1. This completes the proof of the induction. Setting ! = n gives us the second part of the

theorem.
QED



