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Overview

e “Classical” Logic Gates
e Reversible Logic
e Quantum Gates

e A taste of quantum algorithms:
Deutsch algorithm

"Classical” Logic Gates
(3.1.2)

e A gate is a function from m bits to n
bits, for some fixed numbers m and n
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"Classical” Logic Gates

e We "glue” gates together to make
“circuits” (or “arrays of gates”) which
compute Boolean functions

Universal Set of Logic Gates

e A set B of gates is universal if, for any
Boolean function F, there is a circuit with
gates in B that computes F

e E.g. B={ NOT } is not universal

e E.g B={ AND } is not universal

e E.g. B={NOT, AND } is universal

Universal Set of Logic Gates

e A circuit designed with one finite set A of
gates can be efficiently translated into a
circuit using gates from a universal set B.

e How? Note that since B is universal, every
gate in A can be redlised by a circuit
composed of gates from B. So we simply
replace each gate G in A with an
appropriate circuit of gates from B.




"Classical” Logic Gates

e If all physical processes are unitary (and
thus reversible), a complete description of
a physical process implementing the AND
gate should be reversible.

e However the AND gate is not logically
reversible,

e Therefore, the (non-reversible) AND gate

“throws away" or “erases” information that
would make it reversible.

"Classical” Logic Gates

e Landauer’s Principle (3.2.5): To erase a
single bit of information dissipates at least
kT log(2) amount of energy into the
environment

e It was thought that dissipation of energy
implied fundamental limits on real
computation

"Classical” Logic Gates

e However Bennett showed that any
computation can be made reversible and
therefore doesn't in principle require
energy dissipation

e Method: Replace each irreversible gate
with a reversible generalization




Irreversible gates from
reversible ones

e Note that irreversible gates are really just
reversible gates where we hardwire some
inputs and throw away some outputs
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Making reversible circuits
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e Replace irreversible gates with their
reversible counterparts
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Making reversible circuits

e One problem is that there will be junk left
in the extra bits we don't uncompute

e Bennett showed how to uncompute the junk
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Making reversible circuits

e An irreversible circuit with space S and
depth (or “time") T can thus be simulated
by a reversible circuit with space in
O(S+T) and time O(T)

e Bennett also showed how to implement a
reversible version with time O(T'"¢) and
space O(S log(T)) or time O(T) and space
O(sT?).

New gates/notation

“X"-gate or NOT-gate
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“controlled-NOT" gate
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Probabilistic computing

e Suppose we have two bits, corresponding
to two distinguishable systems, A and B.

e Suppose we flip a fair coin to establish the
value of the bit A.

e We can describe the state of bit A as
(6 %/0)6 %1)) orsimply (5,5)
e In general, the state of any probabilistic
bit can be of the form (a,6) where

O<ab<la+b=1




Probabilistic computing

e Note that the NOT or X gate corresponds
to multiplying the probability vector by the
matrix [0 1
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Probabilistic computing

e Suppose the state of system (A,B) is
(3,7).10)
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e Bits A and B become "correlated”; we
cannot describe them independently

Probabilistic computing

e We could describe the four state system
(A,B) with one vector (3,0,0,7)

e The state (:3,7).(10) would correspond
to the vector (3,0,7,0)

e The controlled-NOT correspo
multiplying the 4-tuple by
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Some tensor product facts

Some tensor product facts
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Some tensor product facts
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Information and Physics

e Information is always stored in a physical
medium and manipulated by a physical
process.

e Any meaningful theory of information

processing must refer (at least implicitly) to
a realistic physical theory.

Quantum Mechanics and
Information Processing

e Since physics is quantum mechanical, we need
to recast the theory of information
processing in a quantum mechanical
framework.

Implications

e Any physical medium capable of representing
0 and 1is in principle capable of storing any
linear combination ,|0)+a;|1)

* How does this affect computational
complexity?

e How does this affect communication
complexity?

e How does this affect information security?

e Would you believe a quantum proof?




A small computer
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Is this realistic?

e We do have a theory of classical linear error
correction.

e But before we worry about stabilizing this
system, let's push forward its capabilities.
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One thing we know about it
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we geT| 0 > with probability |0'o|2

If we measure a, ‘ O> + q

and | 1> with probability |a1|2
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