

# Introduction to Quantum Information Processing

Lecture 2

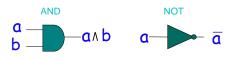
Michele Mosca

#### Overview

- "Classical" Logic Gates
- Reversible Logic
- Quantum Gates
- A taste of quantum algorithms: Deutsch algorithm

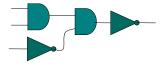
# "Classical" Logic Gates (3.1.2)

 A gate is a function from m bits to n bits, for some fixed numbers m and n



#### "Classical" Logic Gates

 We "glue" gates together to make "circuits" (or "arrays of gates") which compute Boolean functions



#### Universal Set of Logic Gates

- A set B of gates is universal if, for any Boolean function F, there is a circuit with gates in B that computes F
- E.g. B = { NOT } is not universal
- E.g B = { AND } is not universal
- E.g. B = {NOT, AND } is universal

## Universal Set of Logic Gates

- A circuit designed with one finite set A of gates can be efficiently translated into a circuit using gates from a universal set B.
- How? Note that since B is universal, every gate in A can be realised by a circuit composed of gates from B. So we simply replace each gate G in A with an appropriate circuit of gates from B.

#### "Classical" Logic Gates

- If all physical processes are unitary (and thus reversible), a complete description of a physical process implementing the AND gate should be reversible.
- However the AND gate is not logically reversible.
- Therefore, the (non-reversible) AND gate "throws away" or "erases" information that would make it reversible.

#### "Classical" Logic Gates

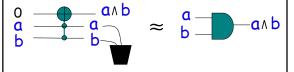
- Landauer's Principle (3.2.5): To erase a single bit of information dissipates at least kT log(2) amount of energy into the environment
- It was thought that dissipation of energy implied fundamental limits on real computation

#### "Classical" Logic Gates

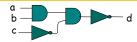
- However Bennett showed that any computation can be made reversible and therefore doesn't in principle require energy dissipation
- Method: Replace each irreversible gate with a reversible generalization

## Irreversible gates from reversible ones

 Note that irreversible gates are really just reversible gates where we hardwire some inputs and throw away some outputs



#### Making reversible circuits



 Replace irreversible gates with their reversible counterparts



#### Making reversible circuits

- One problem is that there will be junk left in the extra bits we don't uncompute
- Bennett showed how to uncompute the junk

$$|x\rangle|0\rangle|0\rangle|0\rangle$$

$$-\frac{compte}{f(x)}\rightarrow|x\rangle|f(x)\rangle|ijnk(x)\rangle|0\rangle$$

$$-\frac{comp}{f(x)}\rightarrow|x\rangle|f(x)\rangle|ijnk(x)\rangle|f(x)\rangle$$

$$---\frac{\text{uncompte}}{} - \frac{f(x)}{} \rightarrow |x\rangle |0\rangle |0\rangle |f(x)\rangle$$

#### Making reversible circuits

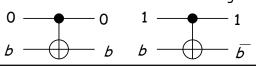
- An irreversible circuit with space S and depth (or "time") T can thus be simulated by a reversible circuit with space in O(S+T) and time O(T)
- Bennett also showed how to implement a reversible version with time  $O(T^{1+\epsilon})$  and space  $O(S \log(T))$  or time O(T) and space  $O(ST^{\epsilon})$ .

#### New gates/notation

"X"-gate or NOT-gate

$$\begin{array}{c|c}
0 & -X & -1 \\
1 & -X & -0
\end{array}$$

"controlled-NOT" gate



#### Probabilistic computing

- Suppose we have two bits, corresponding to two distinguishable systems, A and B.
- Suppose we flip a fair coin to establish the value of the bit A.
- We can describe the state of bit A as  $(5 \% |0\rangle, 5 \% |1\rangle)$  or simply (.5, 5)
- ullet In general, the state of any probabilistic bit can be of the form (a,b) where

 $0 \le a, b \le 1, a + b = 1$ 

#### Probabilistic computing

• Note that the NOT or X gate corresponds to multiplying the probability vector by the matrix  $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ 

#### Probabilistic computing

- Suppose the state of system (A,B) is (.3, 7),(1,0)
- $\begin{array}{c|c} \mathbf{0} & \%|\mathbf{0}\rangle \\ \overline{\mathbf{0}} & \%|\mathbf{1}\rangle \end{array} \qquad \begin{array}{c} \mathbf{0} & \%|\mathbf{0}\rangle|\mathbf{0}\rangle \\ \hline & |\mathbf{0}\rangle \end{array}$
- Bits A and B become "correlated"; we cannot describe them independently

#### Probabilistic computing

- We could describe the four state system (A,B) with one vector (.3,0,0,7)
- The state (.3, 7),(1,0) would correspond to the vector (.3,0,7,0)
- $\bullet$  The controlled-NOT corresponds to multiplying the 4-tuple by  $\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$

0 1 0 0 0 0 0 1 0 0 1 0

## Some tensor product facts

$$\begin{bmatrix} a \\ b \end{bmatrix} \otimes \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} a & c \\ d & d \\ b & c \end{bmatrix} = \begin{bmatrix} ac \\ ad \\ b \\ b \end{bmatrix}$$

## Some tensor product facts

$$\begin{bmatrix} a_1 & a_2 \\ a_2 & a_2 \end{bmatrix} \otimes \begin{bmatrix} b_1 & b_2 \\ b_2 & b_2 \end{bmatrix} = \begin{bmatrix} a_1 \begin{bmatrix} b_1 & b_2 \\ b_2 & b_2 \end{bmatrix} & a_2 \begin{bmatrix} b_1 & b_2 \\ b_2 & b_2 \end{bmatrix} \\ a_2 \begin{bmatrix} b_1 & b_2 \\ b_2 & b_2 \end{bmatrix} & a_2 \begin{bmatrix} b_1 & b_2 \\ b_2 & b_2 \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} a_1 b_1 & a_1 b_2 & a_2 b_1 & a_2 b_2 \\ a_1 b_2 & a_1 b_2 & a_2 b_1 & a_2 b_2 \\ a_2 b_1 & a_2 b_2 & a_2 b_2 & a_2 b_2 \end{bmatrix}$$

## Some tensor product facts

$$\begin{pmatrix}
\begin{bmatrix} a_1 & a_2 \\ a_2 & a_2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \otimes \begin{pmatrix} \begin{bmatrix} b_1 & b_2 \\ b_2 & b_2 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \end{pmatrix} = \\
= \begin{pmatrix} \begin{bmatrix} a_1 & a_2 \\ a_2 & a_2 \end{bmatrix} \otimes \begin{pmatrix} b_1 & b_2 \\ b_2 & b_2 \end{pmatrix} \begin{pmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \otimes \begin{pmatrix} w_1 \\ w_2 \end{bmatrix} \end{pmatrix}$$

$$(A \otimes B)(v \otimes w)$$

#### Information and Physics



- Information is always stored in a physical medium and manipulated by a physical process.
- Any meaningful theory of information processing must refer (at least implicitly) to a realistic physical theory.

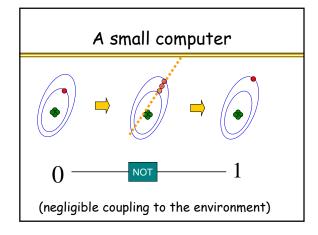
## Quantum Mechanics and Information Processing

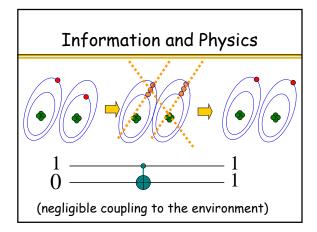
 Since physics is quantum mechanical, we need to recast the theory of information processing in a quantum mechanical framework.

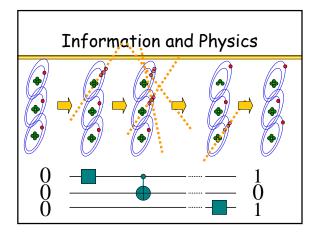
#### **Implications**

- Any physical medium capable of representing 0 and 1 is in principle capable of storing any linear combination  $\alpha_{\rm o}|0
  angle+\alpha_{\rm l}|1
  angle$
- How does this affect computational complexity?
- How does this affect communication complexity?
- How does this affect information security?
- Would you believe a quantum proof?

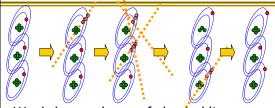
| О |  |
|---|--|
|   |  |
|   |  |
| U |  |





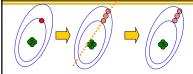


### Is this realistic?



- We do have a theory of classical linear error correction.
- But before we worry about stabilizing this system, let's push forward its capabilities.

### A quantum gate



$$|0\rangle$$
 —  $\frac{i}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$ 

$$\left|1\right\rangle$$
 — NOT —  $\frac{1}{\sqrt{2}}\left|0\right\rangle$  +  $\frac{i}{\sqrt{2}}\left|1\right\rangle$ 

#### **>>>**



what is  $\frac{i}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$  supposed to mean?

## One thing we know about it

If we measure  $\alpha_0 \left| 0 \right> + \alpha_1 \left| 1 \right>$  we get  $\left| 0 \right>$  with probability  $\left| \alpha_0 \right|^2$  and  $\left| 1 \right>$  with probability  $\left| \alpha_1 \right|^2$ 

|  | _ |
|--|---|