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Introduction To Quan’rum
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Lecture 3
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Overview

e Why quantum mechanics?

e Postulate 1: state space

e Postulate 2: unitary evolution

e Postulate 4: composite systems
e Postulate 3: measurements

Why quantum mechanics?

e Equilibrium of radiation with the walls
of a cavity

e Photoelectric effect

e Discrete spectrum of atomic
radiation

e Stability of atoms




Equilibrium of radiation with
the walls of a cavity?
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Stability of atoms

This is what should occur according to the Maxwell equations.

But it doesn’t occur. .
.
Why? \
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Postulate 1: state space

Associated to any isolated physical system is
a complex vector space with inner product
known as the state space of the system. The
state of the system is completely described
by its stfate vector, which is a unit vector in
the system's state space.

(Usually referred to as a Hilbert space, which is an inner
product space that is complete with respect to the norm
defined by the inner product. Trivial for finite dimensional
complex vector spaces. We will restrict attention to finite
dimensional spaces for most of this course.)

Dirac notation

For any vector |¢) , we let (¥ denotel¥)’, the
complex conjugate of |y).

We denote by (¢|w)=(p|l|y) the inner
product between two vectors |9) and |¢)
(w| defines a linear function that maps

o) ~ (Wwle) (Te. wile)=wle) it maps any state
|@) to the coefficient of its|y) component)




Postulate 2: evolution

The evolution of a closed quantum system is
described by a unitary transformation.

That is, the state |¢(t)) of the system at
time 1, is related to the state |y(t,))at time
t, by a unitary operator U that only depends
on t;and t,.

W) =U (.t )wt,))

(if we want a linear evolution that preserves the norm, then we must
have unitary evolution)

More Dirac notation

|wXw| defines a linear operator that maps
lw)wle) - [wXwle) =w|e)w)

(T.e. projects a state to its \l[l)componen‘r)
(Aside: this projection operator also corresponds to the
“density matrix” for |) )

More generally, we can also have operators
like |6){y|

8)w|o) - [6)w|e) =(w|p)6)

More Dirac notation

For example, the one qubit NOT gate
corresponds to the operator |0)(1]+|1)(0|

e.g. (0+/(0]){0))
=[0)(1]0)+|1{0] o)
=[0)(1/0) +|1{0]0)
=00+
=D
The NOT gate is a 1-qubit unitary operation.




Special unitaries:
Pauli Matrices

The NOT operation, is often called the X or
oy operation.
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Special unitaries:
Pauli Matrices

o An operator H is Hermitian if H = HT (f means con-
jugate and transpose). The Pauli matrices are Hermitian
operators.

eAn operator U is unitary if U~ = Ut. Operators of the
form

U=eH
are unitary. E.g., using the Pauli matrices
U = ¢ 077 _ o= 0(nXdnY+n.2) _ oo 01l — isin 07 - &

for # being a unit vector.

What is €™ ?2?

It helps to start with the spectral
decomposition theorem.




Spectral decomposition

e Definition: an operator (or matrix) M is
“hormal” if MM'=M'M

e E.g. Unitary matrices U satisfy
uuU'=U'U=I

e E.g. Density matrices (since they satisfy
p=p'; i.e. "Hermitian") are also normal

Spectral decomposition

e Theorem: For any normal matrix M,
there is a unitary matrix P so that
M=PAP* where A is a diagonal matrix.

e The diagonal entries of A are the
eigenvalues. The columns of P encode the
eigenvectors.

e.g. NOT gate
X9 =D XI9=19 X =10+
R I S X

01 10
[X]”“»_L 0}: k4 E[O —J\? 4
V2 42 V2 42
Dl E =505




Spectral decomposition
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Spectral decomposition

PAP'

A (w|
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Verifying eigenvectors and

eigenvalues
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Verifying eigenvectors and
eigenvalues
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Why is spectral decomposition
useful?

Note that q >< ‘)m ‘ >< ‘ ’
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Why is spectral decomposition
useful?

((0)= S o =X, Salwilo |

=Ta AW = TaA”|u )
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Same thing in matrix notation

fM)=>am"

f(PAP') =Y a,(PAP')" =3 a, PA™P' = P(z amAm)P*

AT 2 aA"
Pr=p ' p'
AT

=P

Da,

m
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Same thing in matrix notation

> ah”
f(PAP') =P Pt
>ah"

Same thing in matrix notation

f(A)
f(PAP") =P P

)

() e
=[w) [w) - |w.) B

:iZf(/k)\wJ(wi\

Schroedinger equation

Postulate 2: The evolution of an isolated quantum system
is given by the Schrédinger equation

.0
—1a|‘1’(t)) = H|¥(t)) (12)
where H is an operator called the Hamiltonian which de-
fines the theory that we are working with (electromagnetism,
QCD, gravity, string theory ...).
There is a formal solution for this equation
1B () = e~/ ¢H |5 (0)) (13)
If H is hermitian, e—¢/9tH is a unitary operator that we
will call U. In quantum computation, U is a representation
of the algorithm.
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Postulate 4: composite systems

A system S that is composed entirely of two
subsystems, A and B, with state spaces H,
and Hp respectively, has state space H, [J H,

A system S that is composed entire of
several subsystems, A, A,, ..., A, with state
spaces H,,, Hy,, ... respectively, has state

space
H,OH, O--0OH,

Postulate 3: measurements

"Von Neumann measurement
in the computational basis"

e Suppose we have a universal set of quantum
gates, and the ability o measure each qubit
in the basis {|0>,|1>}

o If we measure |®) = (a,|0) + a,|1)) we get

|b)  with probability |ab|2

11



In section 2.2.5, this is described as follows

b We have the projection operators By =|0)(0|
and P = |1><1| satisfying P+P=I
p We consider the projection operator or
“observable” M = OP, +1P, =P,
p Note that O and 1 are the eigenvalues
p When we measure this observable M, the
probability of getting the eigenvalue bis
Pr(b) :<I<pr:>b‘q>> = \ab\z and we are in
that case left with the state Rl®) =&\b> ~|b)
Jpb) o




