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Overview

e Von Neumann measurements
e General measurements

e Traces and density matrices and
partial traces

"Von Neumann measurement
in the computational basis"

e Suppose we have a universal set of quantum
gates, and the ability o measure each qubit
in the basis {|0>,|1>}

o If we measure |®) = (a,|0) + a,|1)) we get

|b)  with probability |ab|2




In section 2.2.5, this is described as follows

p We have the projection operators Py =|0)(0|
and P = |1><1| satisfying P+R=I
p We con5|der' the projection oper‘a'ror' or
“observable” M = OP, +1P, =P,
p Note that 0 and 1 are the eigenvalues
p When we measure this observable M, the
probability of getting The eigenvalue bis
Pr(b) = <| # | @) = ‘ab‘ and we are in

that case left with the state Rl®) _ 5 |b) = |b)
Jp(b) \0‘ |

"Expected value” of an observable

If we associate with outcome |b> the
eigenvalue b then the expected outcome is

Zb:bPr(b)
= Sb(ofla)=(o[ TeR o)
-1 (o 2% o) |=Tefwo)a]

"Von Neumann measurement
in the computational basis"

e Suppose we have a universal set of quantum
gates, and the ablll'ry to measure each qubit

e Say we have The sTaTe Z

o If we measure all n qubn‘s Then we obtain
| ) with probability o, |

e Notice that this means that probability of
measuring a |0> in the first qubit equals

x
x00{0 1)"!




Partial measurements

e If we only measure the first qubit and leave
the rest alone, then we still get |0) with
probability Po = Xmm‘)ﬁx\

e The remaining n-1 qubits are then in the
renormalized state a, 1)

o

x00{0.13" /P

e (This is similar to Bayes Theorem)

In section2.2.5

e This partial measurement corresponds to
measuring the observable

M =0]0)(0] O T™* +1|1)(1| 0 T

Von Neumann Measurements

e A Von Neumann measurement is a type of
projective measurement, Given an
orthonormal basis { lIJk>} , if we perform a
Von Neumann measurement with respect to

(W)} of the state |P) = Zak‘%ﬁhen
we measure|Wx) with probability

o =) = (W, |e)@|w,)
= (W oXo|w,)= (v )(w| )|




Von Neumann Measurements

e E.x. Consider Von Neumann measurement of
the state |®) = (a|0) +B|1)) with respect to
the orthonormal basis {M 0) -1 }

o Note that V2 e

)= 28018 g 191

2l 2 ) el e
o We therefore get [\0>+\1>j with probability
2 a+°
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Von Neumann Measurements

e Note ‘rhaT[(O +<1j o) =8 +B
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How do we implement
Von Neumann measurements?

o If we have access to a universal set of
gates and bit-wise measurements in the
computational basis, we can implement Von
Neumann measurements with respect to an
arbitrary orthonormal basis {|qu>} as
follows.




How do we implement
Von Neumann measurements?

e Construct a quantum network that
implements the unitary transformation

Uy,) =|k)

e Then "conjugate” the measurement
operation with the operation U
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Ex. Bell basis change

e Consider the orthonormal basis consisting
of the "Bell” states

B, )=[0 )+[1) By )=[0)+[0 )

B )=[0 )=[1) |B)=]0)-[0)
o Note that

x) —H}—+— B, )

y) ———O—




Bell measurement

e We can "destructively” measure
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e Or non-destructively project
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Most general measurement
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Trace of a matrix

The trace of a matrix is the sum of its diagonal elements
8o 8n 8
Qo & A
p 8 8y
Some properties: Tr[XA+yB]=xTr[Al+ yTr[B]

Tr[AB|=Tr[BA]

Tr[ABC] = Tr[CAB]

Trluaut]=Tr[A]
Orthonormal basis { |@,) } (A=Y (0 |A0)

eg.

Tr =aptay tay




Density Matrices

|9)=a0|0) +a[1)
Notice that ay(0l¢, and a; (1| ®.
So the probability of getting O when measuring | ¢ is:
p(0) =/af* =[(0]¢)f

=(0lg)((0]®))' = (0]e)p|0)
=(0]e)e|0)=Tr((0]e)e|0))
=Tr(0)0]e)e[)=Tr(0)(0lo)

where p= |g(d is called

the density matrix for the
state |@

Mixture of pure states

A state described by a state vector | ¢ is called a
pure state.

What if we have a qubit which is known to be in the
pure state | @) with probability p;, and in | @) with
probability p, ?

More generally, consider probabilistic mixtures of
pure states (called mixed states):

o={(o).p).(0.).p.). .}

Density matrix of a mixed state

..then the probability of measuring O is given by
conditional probability:

p(0) = z o [ﬂprob. of measuring Ogiven purestate| gq))
=3 nr(0)0]o)o))
=Tr2.pl0)0le el
=Tr(0)0le)
wherep =" p|@)q| is the density matrix for the mixed
w state @

Density matrices contain all the useful information about an
arbifrary quantum state.




Density Matrix

If we apply the unitary operation U to |¢)
the resulting state is U\ w)

with density matrix

Upulw)) = vw)w vt

Density Matrix

If we apply the unitary operation U to {la|wo)
the resulting state is  {(G.Ulw.)}
with density matrix

Zk: qU ‘ Wy ><Wk ‘U !

=u( e b

=UpU"

Density Matrix

If we perform a Von Neumann measurement
of the state #=1)¥| wrt a basis
containing |¢) , the probability of
obtaining lg) is

ol =7 (ool




Density Matrix

If we perform g Von Neumann measurement
of the state {(d|w))

wrt a basis containing D) the probability
of obtaining |@) s

Zk: (Wi ‘@‘2 = Zk: aTr (w)we|9)ol)
=11 Talw)wle)e)]

=Tr (o) (o])

Density Matrix

In other words, the density matrix contains
all the information necessary to compute
the probability of any outcome in any
future measurement.

Spectral decomposition

e Often it is convenient to rewrite the
density matrix as a mixture of its
eigenvectors

e Recall that eigenvectors with distinct
eigenvalues are orthogonal; for the
subspace of eigenvectors with a common
eigenvalue ("degeneracies"), we can
select an orthonormal basis




Spectral decomposition

e In other words, we can always
“diagonalize" a density matrix so that it
is written as

p= ; P )|

where |(Pk> is an eigenvector with
eigenvalue p, and ﬂ¢k> forms an
orthonormal basis

Partial Trace

e How can we compute probabilities for
a partial system?

B9 Ta,lxly)
-3(Za 10y

=§ﬁ[;j;7x>}y>

Partial Trace

o If the 2n system is taken away and
never again (directly or indirectly)
interacts with the 15" system, then we
can treat the first system as the

following mixture
° Eg p Cfixy X y)=p
T05 T

Dﬁaﬁ_»{ py;jpi@}% =Tr,0
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Partial Trace

5B S5l y=e

Dﬁaﬁ_»{ pyyzx“:/xpixﬂ}:pz =Tr,p

szngpv\q’qu’y\ \®y>:§\/%\x>

Why?

o the probability of measuring e.g. |W)in
the first regisfer depends only on Tr,p
T

Yol =2l
=X pmr{wwlo,)o,
=Tr[w><w[; py¢y><¢y]]

=Tr (w{w{Tr,p)

Partial Trace

e Notice that it doesn't matter in which
orthonormal basis we “trace out” the
2nd system, e.g.

a|00) + B[11) O - [a["|0)(0] +|B[" |1
e In a different basis
1>J

elo0)+ a1y = i)+ ) 75
s lelo)-am) 01|
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Partial Trace

a0+ Lo+ o)

s lelo) -] 510 -1
08 - (a0 + B))er (0 +6(2)

+3(ai0)- g (0l-6'()
=|af’|o)o] + |8 )

Distant transformations don't
change the local density matrix

e Notice that the previous observation
implies that a unitary transformation on
the system that is traced out does not
affect the result of the partial trace

ele.
Zp|o,ply)=(10u)e
b b, |0, b= p. = Tr

Distant transformations don't
change the local density matrix

e In fact, any legal quantum transformation
on the traced out system, including
measurement (without communicating
back the answer) does not affect the
partial trace

R PR
g —’{(pyv‘q)»)}: p, =Trp
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Why??

e Operations on the 2" system should not
affect the statistics of any outcomes of
measurements on the first system

e Otherwise a party in control of the 2nd
system could instantaneously
communicate information to a party
controlling the 15t system.

Principle of implicit
measurement

e If some qubits in a computation are
never used again, you can assume (if
you like) that they have been
measured (and the result ignored)

e The "reduced density matrix” of the
remaining qubits is the same

Partial Trace

e This is a linear map that takes bipartite
states to single system states.

e We can also trace out the first system

e We can compute the partial trace
directly from the density matrix
description

()& 0| ) = ikl o (7))
=|ik| D) = (1] J)NA|




Partial Trace using matrices
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e Tracing out the 2" system
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Most general measurement
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