

Introduction to Quantum Information Processing

Lecture 4

Michele Mosca

Overview

- Von Neumann measurements
- General measurements
- Traces and density matrices and partial traces

"Von Neumann measurement in the computational basis"

- Suppose we have a universal set of quantum gates, and the ability to measure each qubit in the basis $\{|0\rangle,|1\rangle\}$
- If we measure $|\Phi\rangle = (\alpha_0|0\rangle + \alpha_1|1\rangle)$ we get $|b\rangle$ with probability $|\alpha_b|^2$

In section 2.2.5, this is described as follows

- We have the projection operators $P_{0}=\left|0\right\rangle\!\!\left\langle 0\right|$ and $P_{1}=\left|1\right\rangle\!\!\left\langle 1\right|$ satisfying $P_{0}+P_{1}=I$ We consider the projection operator or
- "observable" $M = OP_0 + 1P_1 = P_1$
- Note that 0 and 1 are the eigenvalues
- When we measure this observable M, the probability of getting the eigenvalue bis $\Pr(b) = \left\langle \Phi \middle| P_b \middle| \Phi \right\rangle = \left| \alpha_b \middle|^2 \quad \text{and we are in} \\ \text{that case left with the state} \frac{P_b \middle| \Phi \rangle}{\sqrt{p(b)}} = \frac{\alpha_b}{\left| \alpha_b \middle|} |b\rangle \approx |b\rangle$

"Expected value" of an observable

If we associate with outcome $|b\rangle$ the eigenvalue b then the expected outcome is

$$\sum_{b} b \Pr(b)$$

$$= \sum_{b} b \langle \Phi | P_{b} | \Phi \rangle = \langle \Phi | \left(\sum_{b} b P_{b} \right) | \Phi \rangle$$

$$= \sum_{b} b \langle \Phi | P_{b} | \Phi \rangle = \langle \Phi \left(\sum_{b} b P_{b} \right) | \Phi \rangle$$
$$= Tr \left[\langle \Phi \left(\sum_{b} b P_{b} \right) | \Phi \rangle \right] = Tr \left[M | \Phi \rangle \langle \Phi | \right]$$

"Von Neumann measurement in the computational basis"

- Suppose we have a universal set of quantum gates, and the ability to measure each qubit in the basis $\{|0\rangle,|1\rangle\}$
- Say we have the state $\sum \alpha_{\mathbf{x}} |\mathbf{x}\rangle$
- If we measure all n qubits, then we obtain $| extbf{x}
 angle$ with probability $|lpha_{ extbf{x}}|^{\prime}$
- Notice that this means that probability of measuring a $|0\rangle$ in the first qubit equals

•	\sum	α_{x}	2
v=(ν <u>τυ</u> 1.	լn−1	

Partial measurements

- If we only measure the first qubit and leave the rest alone, then we still get $|0\rangle$ with probability $P_0 = \sum_{x \in O(0,1)^{n-1}} |\alpha_x|^2$. The remaining n-1 qubits are then in the
- renormalized state
- (This is similar to Bayes Theorem)

In section 2.2.5

• This partial measurement corresponds to measuring the observable

$$\boldsymbol{M} = \boldsymbol{O} \big| \boldsymbol{O} \big\rangle \! \big\langle \boldsymbol{O} \big| \otimes \boldsymbol{I}^{n-1} + \boldsymbol{1} \big| \boldsymbol{1} \big\rangle \! \big\langle \boldsymbol{1} \big| \otimes \boldsymbol{I}^{n-1}$$

Von Neumann Measurements

• A Von Neumann measurement is a type of projective measurement. Given an orthonormal basis $\left\{\left|\psi_{\mathbf{k}}\right\rangle\right\}$, if we perform a Von Neumann measurement with respect to $\{|\psi_{\mathbf{k}}\rangle\}$ of the state $|\Phi\rangle=\sum\alpha_{\mathbf{k}}|\psi_{\mathbf{k}}\rangle$ then we measure $|\psi_{\mathbf{k}}\rangle$ with probability

$$\begin{split} &\left|\alpha_{\textbf{k}}\right|^{2} = \left|\left\langle\psi_{\textbf{k}}\right|\Phi\right\rangle\right|^{2} = \left\langle\psi_{\textbf{k}}\right|\Phi\right\rangle\!\!\left\langle\Phi\right|\psi_{\textbf{k}}\right\rangle \\ &= \vec{\textbf{n}} \cdot \left(\!\left\langle\psi_{\textbf{k}}\right|\Phi\right\rangle\!\!\left\langle\Phi\right|\psi_{\textbf{k}}\right)\!\right) = \vec{\textbf{n}} \cdot \left(\!\left|\psi_{\textbf{k}}\right\rangle\!\!\left\langle\psi_{\textbf{k}}\right|\!\!\left|\Phi\right\rangle\!\!\left\langle\Phi\right|\right) \end{split}$$

Von Neumann Measurements

- E.x. Consider Von Neumann measurement of the state $|\Phi\rangle = (\alpha|0\rangle + \beta|1\rangle$) with respect to the orthonormal basis $\left\{\frac{|0\rangle+|1\rangle}{\sqrt{2}},\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right\}$
- Note that

$$\left|\Phi\right\rangle = \frac{\alpha+\beta}{\sqrt{2}} \Biggl(\frac{\left|0\right\rangle + \left|1\right\rangle}{\sqrt{2}} \Biggr) + \frac{\alpha-\beta}{\sqrt{2}} \Biggl(\frac{\left|0\right\rangle - \left|1\right\rangle}{\sqrt{2}} \Biggr)$$

• We therefore get $\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)$ with probability

Von Neumann Measurements

• Note that
$$\left(\frac{\langle 0| + \langle 1|}{\sqrt{2}} \right) \! | \Phi \rangle = \frac{\alpha + \beta}{\sqrt{2}}$$

$$\langle \Phi \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}} \right) = \frac{\alpha^* + \beta^*}{\sqrt{2}}$$

$$\left(\frac{\langle 0| + \langle 1|}{\sqrt{2}} \right) \! | \Phi \rangle \! \langle \Phi \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}} \right)$$

$$= \vec{\Pi} \left(\left(\frac{|0\rangle + |1\rangle}{\sqrt{2}} \right) \! \left(\frac{\langle 0| + \langle 1|}{\sqrt{2}} \right) \! | \Phi \rangle \! \langle \Phi | \right) = \frac{|\alpha + \beta|^2}{2}$$

How do we implement Von Neumann measurements?

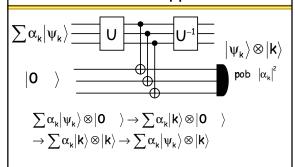
• If we have access to a universal set of gates and bit-wise measurements in the computational basis, we can implement Von Neumann measurements with respect to an arbitrary orthonormal basis $\{|\psi_{\mathbf{k}}\rangle\}$ as follows.

How do we implement Von Neumann measurements?

- Construct a quantum network that implements the unitary transformation
 - $U\!\!\left|\psi_{\textbf{k}}\right\rangle =\!\left|\textbf{k}\right\rangle$
- Then "conjugate" the measurement operation with the operation U

$\sum \alpha_{k} \psi_{k}\rangle$	U		k }	U ⁻¹	_ ψ,
		p ob	$\left \alpha_{\mathbf{k}}\right ^2$		

Another approach



Ex. Bell basis change

 Consider the orthonormal basis consisting of the "Bell" states

$$\left| \begin{array}{c} \beta_{o} \end{array} \right\rangle = \left| \begin{array}{c} O \end{array} \right\rangle + \left| \begin{array}{c} 1 \end{array} \right\rangle \qquad \left| \begin{array}{c} \beta_{o} \end{array} \right\rangle = \left| \begin{array}{c} O \end{array} \right\rangle + \left| \begin{array}{c} O \end{array} \right\rangle$$

$$\left|\,\beta_{\scriptscriptstyle 0}\,\,\right\rangle = \left|\,0\,\,\right.\,\, \left\rangle - \left|\,1\,\,\right\rangle \qquad \left|\,\beta_{\scriptscriptstyle 1}\,\,\right\rangle = \left|\,0\,\,\right.\,\, \left\rangle - \left|\,0\,\,\right.\,\, \right\rangle$$

Note that

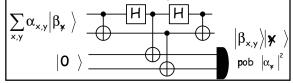
$ {m{x}} angle$	—H—	$ \beta_{\mathbf{x}} $
$ {f y} angle$		P* /

Bell measurement

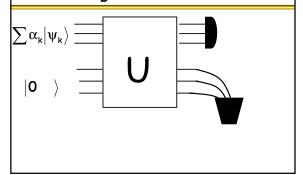
• We can "destructively" measure

$$\sum_{\mathsf{x},\mathsf{y}} lpha_{\mathsf{x},\mathsf{y}} ig| eta_{\mathsf{y}} ig
angle \quad igwedge \qquad ig| eta_{\mathsf{y}} ig
angle \quad ig| eta_{\mathsf{y}} ig
angle \quad ig| eta_{\mathsf{y}} ig|^2$$

Or non-destructively project



Most general measurement



Trace of a matrix

The trace of a matrix is the sum of its diagonal elements

e.g.
$$Tr\begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{bmatrix} = a_{00} + a_{11} + a_{22}$$

Some properties: Tr[xA + yB] = xTr[A] + yTr[B] Tr[AB] = Tr[BA]Tr[ABC] = Tr[CAB]

 $Tr[UAU^{\dagger}] = Tr[A]$

Orthonormal basis { $|\pmb{\varphi}_i\rangle$ } $Tr[A] = \sum_i \langle \pmb{\varphi}_i | A | \pmb{\varphi}_i \rangle$

Density Matrices

$$|\boldsymbol{\varphi}\rangle = \boldsymbol{\alpha}_0 |0\rangle + \boldsymbol{\alpha}_1 |1\rangle$$

Notice that $\alpha_0 = \langle 0 | \phi \rangle$, and $\alpha_1 = \langle 1 | \phi \rangle$.

So the probability of getting 0 when measuring $|\phi\rangle$ is:

$$p(0) = \left| \alpha_0 \right|^2 = \left| \langle 0 | \phi \rangle \right|^2$$

$$= \langle 0 | \boldsymbol{\varphi} \rangle (\langle 0 | \boldsymbol{\varphi} \rangle)^* = \langle 0 | \boldsymbol{\varphi} \rangle \langle \boldsymbol{\varphi} | 0 \rangle$$

$$= \langle 0 \| \boldsymbol{\varphi} \rangle \langle \boldsymbol{\varphi} \| 0 \rangle = Tr \left(\langle 0 \| \boldsymbol{\varphi} \rangle \langle \boldsymbol{\varphi} \| 0 \rangle \right)$$

$$= Tr(0)\langle 0 | \varphi \rangle \langle \varphi |) = Tr(0)\langle 0 | \rho)$$

where ρ = $|\phi\rangle\langle\phi|$ is called the *density matrix* for the state $|\phi\rangle$

Mixture of pure states

A state described by a state vector $|\phi\rangle$ is called a pure state.

What if we have a qubit which is known to be in the pure state $|\phi_1
angle$ with probability p_1 , and in $|\phi_2
angle$ with probability p_2 ? More generally, consider probabilistic mixtures of

pure states (called *mixed states*):

$$\varphi = \{ (|\varphi_1\rangle, p_1), (|\varphi_2\rangle, p_2), \dots \}$$

Density matrix of a mixed state

...then the probability of measuring 0 is given by conditional probability:

 $p(0) = \sum p_i \cdot (\text{prob. of measuring 0 given pure state } |\phi_i\rangle)$

$$= \sum_{i}^{i} p_{i} \cdot Tr(0)\langle 0 | \boldsymbol{\varphi}_{i} \rangle \langle \boldsymbol{\varphi}_{i} |)$$

$$= Tr \sum_{i} p_{i} |0\rangle\langle 0 || \boldsymbol{\varphi}_{i} \rangle\langle \boldsymbol{\varphi}_{i} |$$

$$=Tr(0)\langle 0|\rho\rangle$$

where $\rho = \sum p_{\scriptscriptstyle i} |\phi_{\scriptscriptstyle i}\rangle\!\langle\phi_{\scriptscriptstyle i}|$ $\;$ is the density matrix for the mixed state ϕ

Density matrices contain all the useful information about an arbitrary quantum state.

Density Matrix

If we apply the unitary operation U to $|\psi
angle$ the resulting state is $|\psi
angle$ with density matrix

$$U|\psi\rangle(U|\psi\rangle)^{\dagger}=U|\psi\rangle\langle\psi|U^{\dagger}$$

Density Matrix

If we apply the unitary operation U to $\{(q_k, |\psi_k\rangle)\}$ the resulting state is $\{(q_k, U|\psi_k\rangle)\}$ with density matrix

$$\sum_{k} q_{k} U |\psi_{k}\rangle \langle \psi_{k}| U^{\dagger}$$

$$= U \left(\sum_{k} q_{k} |\psi_{k}\rangle \langle \psi_{k}| \right) U^{\dagger}$$

$$= U \rho U^{\dagger}$$

Density Matrix

If we perform a Von Neumann measurement of the state $\rho=|\psi\rangle\langle\psi|$ wrt a basis containing $|\phi\rangle$, the probability of obtaining $|\phi\rangle$ is

$$\left| \langle \psi | \phi \rangle \right|^2 = \pi \left(
ho |\phi \rangle \langle \phi | \right)$$

Density Matrix

If we perform a Von Neumann measurement of the state $\{(q_k,|\psi_k\rangle)\}$ wrt a basis containing $|\phi\rangle$ the probability of obtaining $|\phi\rangle$ is $\sum_k q_k \big| \langle \psi_k \, | \varphi \rangle \big|^2 = \sum_k q_k Tr \big(|\psi_k \rangle \langle \psi_k \, || \varphi \rangle \langle \varphi | \big)$ $= Tr \bigg(\sum_k q_k \big| \psi_k \rangle \langle \psi_k \, || \varphi \rangle \langle \varphi | \bigg)$ $= Tr \Big(\rho \big| \varphi \rangle \langle \varphi | \bigg)$

Density Matrix

In other words, the density matrix contains all the information necessary to compute the probability of any outcome in any future measurement.

Spectral decomposition

- Often it is convenient to rewrite the density matrix as a mixture of its eigenvectors
- Recall that eigenvectors with distinct eigenvalues are orthogonal; for the subspace of eigenvectors with a common eigenvalue ("degeneracies"), we can select an orthonormal basis

Spectral decomposition

 In other words, we can always "diagonalize" a density matrix so that it is written as

$$\boldsymbol{\rho} = \sum_{k} p_{k} |\boldsymbol{\varphi}_{k}\rangle \langle \boldsymbol{\varphi}_{k}|$$

where $|\pmb{\varphi}_{k}\rangle$ is an eigenvector with eigenvalue p_{k} and $\{|\pmb{\varphi}_{k}\rangle\}$ forms an orthonormal basis

Partial Trace

 How can we compute probabilities for a partial system?

• E.g.
$$\sum_{x,y} \alpha_{x} |x\rangle |y\rangle$$

$$= \sum_{y} \left(\sum_{x} \alpha_{x} |x\rangle \right) |y\rangle$$

$$= \sum_{y} \sqrt{P_{y}} \left(\sum_{x} \frac{\alpha_{y}}{\sqrt{P_{y}}} |x\rangle \right) |y\rangle$$

Partial Trace

- If the 2nd system is taken away and never again (directly or indirectly) interacts with the 1st system, then we can treat the first system as the following mixture
- E.g. $\sum_{y} \sqrt{p_{y}} \left(\sum_{x} \frac{\alpha_{xy}}{\sqrt{p_{y}}} |x\rangle \right) |y\rangle \approx \rho$

$$\xrightarrow{Trace_2} \left\{ \left(p_{y} \sum_{x} \frac{\boldsymbol{\alpha}_{xy}}{\sqrt{p_{y}}} | x \right) \right\} \approx \boldsymbol{\rho}_2 = Tr_2 \boldsymbol{\rho}$$

Partial Trace

$$\sum_{y} \sqrt{p_{y}} \left(\sum_{x} \frac{\alpha_{xy}}{\sqrt{p_{y}}} | x \rangle \right) | y \rangle \approx \rho$$

$$\xrightarrow{Trace_{2}} \left\{ \left(p_{y}, \sum_{x} \frac{\alpha_{xy}}{\sqrt{p_{y}}} | x \rangle \right) \right\} \approx \rho_{2} = Tr_{2}\rho$$

$$Tr_{2}\rho = \sum_{y} p_{y} | \Phi_{y} \rangle \langle \Phi_{y} | \qquad | \Phi_{y} \rangle = \sum_{x} \frac{\alpha_{xy}}{\sqrt{p_{y}}} | x \rangle$$

Why?

ullet the probability of measuring e.g. |w
anglein the first register depends only on $Tr_2\rho$

$$\sum_{y} |\alpha_{wy}|^{2} = \sum_{y} p_{y} \left| \frac{\alpha_{wy}}{\sqrt{p_{y}}} \right|^{2}$$

$$= \sum_{y} p_{y} Tr(|w\rangle\langle w||\Phi_{y}\rangle\langle \Phi_{y}|)$$

$$= Tr(|w\rangle\langle w||\sum_{y} p_{y}||\Phi_{y}\rangle\langle \Phi_{y}||)$$

$$= Tr(|w\rangle\langle w||Tr_{2}\rho)$$

Partial Trace

• Notice that it doesn't matter in which orthonormal basis we "trace out" the 2nd system, e.g. $\alpha |00\rangle + \beta |11\rangle \xrightarrow{Tr_2} |\alpha|^2 |0\rangle\langle 0| + |\beta|^2 |1\rangle\langle 1|$

• In a different basis

 $|\alpha|00\rangle + \beta|11\rangle = \frac{1}{\sqrt{2}}(\alpha|0\rangle + \beta|1\rangle)\left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right)$

$$+\frac{1}{\sqrt{2}}(\boldsymbol{\alpha}|0\rangle-\boldsymbol{\beta}|1\rangle)\left(\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle\right)$$

Partial Trace

$$\frac{1}{\sqrt{2}} (\alpha |0\rangle + \beta |1\rangle) \left(\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \right)$$

$$+ \frac{1}{\sqrt{2}} (\alpha |0\rangle - \beta |1\rangle) \left(\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \right)$$

$$\xrightarrow{Tr_{2}} \frac{1}{2} (\alpha |0\rangle + \beta |1\rangle) (\alpha^{*} \langle 0| + \beta^{*} \langle 1|)$$

$$+ \frac{1}{2} (\alpha |0\rangle - \beta |1\rangle) (\alpha^{*} \langle 0| - \beta^{*} \langle 1|)$$

$$= |\alpha|^{2} |0\rangle \langle 0| + |\beta|^{2} |1\rangle \langle 1|$$

Distant transformations don't change the local density matrix

- Notice that the previous observation implies that a unitary transformation on the system that is traced out does not affect the result of the partial trace
- I.e.

$$\sum_{y} \sqrt{p_{y}} |\Phi_{y}\rangle U|y\rangle \approx (I \otimes U)\rho$$

$$\xrightarrow{Trace_{2}} \{ (p_{y}, |\Phi_{y}\rangle) \} \approx \rho_{2} = Tr_{2}\rho$$

Distant transformations don't change the local density matrix

- In fact, any legal quantum transformation on the traced out system, including measurement (without communicating back the answer) does not affect the partial trace
- I.e.

$$\frac{\left\{\left(p_{y},\left|\Phi_{y}\right\rangle\right|y\rangle\right)\right\}}{Trace_{2}} = \left\{\left(p_{y},\left|\Phi_{y}\right\rangle\right)\right\} \approx \rho_{2} = Tr_{2}\rho$$

Why??

- Operations on the 2nd system should not affect the statistics of any outcomes of measurements on the first system
- Otherwise a party in control of the 2nd system could instantaneously communicate information to a party controlling the 1st system.

Principle of implicit measurement

- If some qubits in a computation are never used again, you can assume (if you like) that they have been measured (and the result ignored)
- The "reduced density matrix" of the remaining qubits is the same

Partial Trace

- This is a linear map that takes bipartite states to single system states.
- We can also trace out the first system
- We can compute the partial trace directly from the density matrix description

$$\begin{split} & \mathcal{T}_{2} \Big(\! | i \rangle \! \langle k | \otimes | j \rangle \! \langle \ell | \Big) \! = \! | i \rangle \! \langle k | \otimes \mathcal{T} \left(\! | j \rangle \! \langle \ell | \right) \\ & = \! | i \rangle \! \langle k | \otimes \langle \ell | j \rangle \! = \! \langle \ell | j \rangle \! | i \rangle \! \langle k | \end{split}$$

1	2
- 1	

Partial Trace using matrices

Tracing out the 2nd system

$$\begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \xrightarrow{T_{T_2}} Tr \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} Tr \begin{bmatrix} a_{02} & a_{03} \\ a_{12} & a_{13} \end{bmatrix} \\ Tr \begin{bmatrix} a_{20} & a_{21} \\ a_{30} & a_{31} \end{bmatrix} Tr \begin{bmatrix} a_{22} & a_{23} \\ a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix}$$

$$= \begin{bmatrix} a_{00} + a_{11} & a_{02} + a_{13} \\ a_{20} + a_{31} & a_{22} + a_{33} \end{bmatrix}$$

$$ho$$
 $ho \mapsto Tr_2(
ho \otimes |\mathbf{0}|)$